Пшениця (Triticum aestivum L.) — одна з найважливіших зернових культур, вона є ключовим компонентом раціону людини, основним складником кормів для тварин і зерна для промислових цілей. У зв’язку зі збільшенням чисельності населення в світі зростає необхідність розширення виробництва та збільшення продуктивності пшениці. Крім того, кліматичні зміни потребують підвищення адаптивного потенціалу рослин до стресових погодних умов. У зв’язку з цим поліпшення пшениці за ознаками стійкості до біотичних та абіотичних стресів, ознаками якості зерна й ознаками, що впливають на врожайність — основні завдання селекціонерів і генетиків. Подолати негативний вплив біотичних та абіотичних чинників, які здатні значно знижувати врожай цієї культури, можна за допомогою генно-інженерних технологій і добору генотипів із господарсько-важливими ознаками, базуючись на вивченні генетичного поліморфізму. В огляді розглянуто сучасні біотехнологічні підходи поліпшення господарсько-цінних ознак пшениці. Описано перспективні генно-інженерні технології підвищення продуктивності та адаптивності пшениці до абіотичних і біотичних стресів. Висвітлено можливості маркер-асоційованої селекції в процесі створення сортів пшениці з унікальними комбінаціями генів, що забезпечують адаптацію до умов вирощування й набуття необхідного рівня корисних технологічних ознак. Наведено приклади створення нових генотипів пшениці з підвищеною стійкістю до стресових чинників за допомогою генетичних модифікацій. Показано можливості сучасних технологій цілеспрямованого редагування геному із застосуванням системи CRISPR/Cas9 та отримання модифікованих рослин пшениці без продукування в них трансгенних білків із використанням регуляторних механізмів експресії генів шляхом РНК-інтерференції.
Ключові слова: Triticum aestivum L., стресостійкість, продуктивність, генно-інженерні технології, маркер-асоційована селекція, генетична модифікація, РНК-інтерференція
Повний текст та додаткові матеріали
У вільному доступі: PDFЦитована література
1. Shewry, P.R. (2009). Wheat. J. Exp. Bot., 60, pp. 1537-1553. https://doi.org/10.1093/jxb/erp058
2. Morgun, V.V., Dubrovna, O.V. & Morgun, B.V. (2016). Modern biotechnologies for stress-resistant wheat plants. Fiziologiya rasteniy i genetika, 48, No. 3, pp. 196-213 [in Ukrainian]. https://doi.org/10.15407/frg2016.03.196
3. http://www.ukrstat.gov.ua/operativ/operativ2019/sg/ovuzpsg/Arh_ovuzpsg2019_u.html
4. Aggarwal, P.K. (2008). Global climate change and Indian agriculture: Impacts, adaptation and mitigation. Indian. J. Agr. Sci., 78, pp. 911-919.
5. Rezaei, E.E., Siebert, S., Manderscheid, R., Muller, J., Mahrookashani, A., Ehrenpfordt, B., Haensch, J., Weigeld, H.-J. & Ewert, F. (2018). Quantifying the response of wheat yields to heat stress: The role of the experimental setup. Field Crops Res., 217, pp. 93-103. https://doi.org/10.1016/j.fcr.2017.12.015
6. Balla, K., Karsai, I., Bynis, P., Kiss, T., Berki, Z., Horvath, Б., Mayer, M., Bencze, S. & Veisz, O. (2019). Heat stress responses in a large set of winter wheat cultivars (Triticum aestivum L.) depend on the timing and duration of stress. PLoS One, 14, p. e0222639. https://doi.org/10.1371/journal.pone.0222639
7. Raza, A., Razzaq, A., Mehmood, S.S., Zou, X., Zhang, X., Lv, Y. & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants, 8, p. 34. https://doi.org/10.3390/plants8020034
8. Soba, D., Ben Mariem, S., Fuertes-Mendizabal, T., Mendez-Espinoza, A.M., Gilard, F., Gonzalez-Murua, C., Irigoyen, J.J., Tcherkez, G. & Aranjuelo, I. (2019). Metabolic effects of elevated CO2 on wheat grain development and composition. J. Agric. Food. Chem., 67, pp. 8441-8451. https://doi.org/10.1021/acs.jafc.9b01594
9. Brown, L. (2011).The great food crisis of 2011. Foreign Policy, 10, pp. 1-5. Available at: http://www.earthpolicy.org/plan_b_updates/2011/update90
10. Bowne, J.B., Erwin, T.A., Juttner, J., Jairus, B., Bowne, Tim A., Erwin, Juan Juttner, J., Schnurbusch, T., Langridge, P., Bacic, A. & Roessner, U. (2012). Drought responses of leaf tissues from wheat culti-vars of differing drought tolerance at the metabolite. Level. Mol. Plant, 5, pp. 418-429. https://doi.org/10.1093/mp/ssr114
11. Sallam, A., Mourad, A.M.I., Hussain, W. & Baenziger, S.P. (2018). Genetic variation in drought tolerance at seedling stage and grain yield in low rainfall environments in wheat (Triticum aestivum L.). Euphytica, 214, 169 p. https://doi.org/10.1007/s10681-018-2245-9
12. Ahmed, H.G.M.D., Li, M., Khan, S.H. & Kashif, M. (2019). Early selection of bread wheat genotypes using morphological and photosynthetic attributes conferring drought tolerance. J. Integrat. Agric., 18, pp. 2483-2491. https://doi.org/10.1016/S2095-3119(18)62083-0
13. Rybalka, O.I. (2011). Wheat quality and its improvement. Kyiv: Logos [in Ukrainian].
14. Sivolap, Yu.M. (2013). Molecular markers and selection. Cytology and genetics, 47, No. 3. pp. 71-80 [in Russian]. https://doi.org/10.3103/S0095452713030080
15. Khan, H. (2019). Genetic improvement for end-use quality in wheat. Springer Nature. Switzerland. https://doi.org/10.1007/978-3-030-04609-5_12
16. Miedaner, T. & Korzun, V. (2012). Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology, 102, pp. 560-566. https://doi.org/10.1094/PHYTO-05-11-0157
17. Kozub, N.O., Sozinov, I.O., Karelov, A.V., Blum, Ya.B. & Sozinov, O.O. (2017). Variety of Ukrainian varieties of soft winter wheat by loci of reserve proteins and molecular markers of disease resistance genes. Cytology and genetics, 51, No. 2, pp. 59-73 [in Ukrainian]. https://doi.org/10.3103/S0095452717020050
18. Morgun, V.V. & Rybalka, O.I. (2017). Strategy for genetic improvement of cereals in order to ensure food security, therapeutic and preventive nutrition and the needs of the processing industry. Bulletin of the NAS of Ukraine, 128, pp. 54-64 [in Ukrainian]. https://doi.org/10.15407/visn2017.03.054
19. Matthies, I.E., Malosetti, M. & Rцder, M.S. (2014). Genome-wide association mapping for kernel and malting quality traits using historical european barley records. PLoS One, 9, No. 11, pp. 112-119. https://doi.org/10.1371/journal.pone.0110046
20. Khan, M.K., Pandey, A., Choudhary, S., Saumya, Choudhary, Hakki, E.E., Akkaya, M.S. & Thomas, G. (2014). From RFLP to DArT: molecular tools for wheat (Triticum spp.) diversity analysis. Genet. Resour. Crop. Evol., 61, pp. 1001-1032. https://doi.org/10.1007/s10722-014-0114-5
21. He, J., Zhao, X., Laroche, A. Lu, Z.-H., Liu, H. & Li, Z. (2014). Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci., 5, pp. 1-8. https://doi.org/10.3389/fpls.2014.00484
22. Gulaeva, N.V., Chesnokov, Yu.V., Shevchenko, S.N., Zueva, A.A. & Menibaev, A.I. (2018). Practical application of molecular markers in wheat breeding. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences, 20, No. 2 (4), pp. 726-731 [in Russian].
23. Morgun, B.V. & Tishchenko, E.N. (2014). Molecular biotechnology to improve the resistance of cultivated cereals to osmotic stress. Kyiv: Logos [in Russian].
24. Shrawat, A.K. & Armstrong, C.L. (2018). Development and application of genetic engineering for wheat improvement. Critical Reviews in Plant Sciences, 37, No. 5, pp. 335-421. https://doi.org/10.1080/07352689.2018.1514718
25. Cheng, M., Fry, J.E., Pang, S., Zhou, H., Hironaka, C.M., Duncan, D.R., Conner, T.W. & Wan, Y. (1997). Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol., 115, pp. 971-980. https://doi.org/10.1104/pp.115.3.971
26. Dubrovna, O.V. & Morgun, B.V. (2018). Modern Agrobacterium-mediated transformation of wheat. Fiziologiya rasteniy i genetika, 50, No. 3, pp. 187-217 [in Ukrainian]. https://doi.org/10.11144/Javeriana.SC23-1.amto
27. Sergeeva, L.E., Mykhalska, S.I. & Komisarenko, A.G. (2019). Modern biotechnologies for increasing plant resistance to osmotic stresses. Kyiv: Kondor [in Russian].
28. Wang, K., Riaz, B. & Ye, X. (2018). Wheat genome editing expedited by efficient transformation techniques: progress and perspectives. The Crop Journal, 6, No.1, pp. 22-31. https://doi.org/10.1016/j.cj.2017.09.009
29. Hensel, G., Marthe, C. & Kumlehn, J. (2017). Agrobacterium-mediated transformation of wheat using immature embryos. In Bhalla, P. & Singh, M. (Eds.). Wheat Biotechnology: Methods in Molecular Biology, (pp. 129-139), 1679. https://doi.org/10.1007/978-1-4939-7337-8_8
30. Supartana, P., Shimizu, T., Nogawa, M., Shioiri, H., Nakaqima, T., Haramoto, N., Nozue, M. & Koqima, M. (2006). Development of simple end efficient in Planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. J. Bio. Bioeng., 102, No. 3, pp. 162-170. https://doi.org/10.1263/jbb.102.162
31. Chumakov, M.I. & Moiseeva, E.M. (2012). Technology of agrobacterial transformation of plants in planta. Biotechnology, 1, pp. 8-20 [in Russian].
32. Mykhalska, S.I., Komisarenko, A.G., Kurchii, V.M. & Tishchenko, O.M. (2018). Genetic transformation in planta of winter wheat (Triticum aestivum L.). Faktory eksperym. evolyutsiyi orhanizmiv, 22, pp. 293-298 [in Ukrainian]. https://doi.org/10.7124/FEEO.v22.964
33. Curaba, J., Singh, M.B. & Bhalla, P.L. (2014). miRNAs in the crosstalk between phytohormone signalling pathways. J. Exp. Bot., 65, pp. 1425-1438. https://doi.org/10.1093/jxb/eru002
34. Budak, H., Khan, Z. & Kantar, M. (2015b). History and current status of wheat miRNAs using next-generation sequencing and their roles in development and stress. Brief. Funct. Genomics, 14, pp. 189-198. https://doi.org/10.1093/bfgp/elu021
35. Zhao, X.Y., Hong, P., Wu, J.Y. Chen, X.B., Ye, X.G., Pan, Y.Y., Wang, J. & Zhang, X.S. (2016). The tae-miR408-mediated control of TaTOC1 genes transcription is required for the regulation of heading time in wheat. Plant Physiology, 170, pp. 1578-1594. https://doi.org/10.1104/pp.15.01216
36. Morgun, V.V., Dubrovna, O.V. & Morgun, B.V. (2017). Obtaining stress-resistant wheat plants by biotechnological methods. Plant physiology: achievements and new directions of development. Kyiv: Logos, pp. 393-412 [in Ukrainian].
37. Demirci, Y., Zhang, B. & Unver, T. (2018). CRISPR/Cas9: an RNA-guided highly precise synthetic tool for plant genome editing. Journal of Cellular Physiology, 233, No. 3, pp. 1844-1859. https://doi.org/10.1002/jcp.25970
38. Zhang, Z., Hua, L., Gupta, A., Tricoli, D., Edwards, K.J., Yang, B. & Li, W. (2019). Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genomee diting. Plant Biotechnology Journal, 17, No. 8, pp. 1623-1635. https://doi.org/10.1111/pbi.13088
39. Kim, D., Alptekin, B. & Budak, H. (2018). CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics, 18, pp. 31-41. https://doi.org/10.1007/s10142-017-0572-x
40. Barlow, K.M., Christy, B.P., O'Leary, G.J., Riffkin, P.A. & Nuttall, J.G. (2015). Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Research, 171, pp. 109-119. https://doi.org/10.1016/j.fcr.2014.11.010
41. Hussain, B. (2015). Modernization in plant breeding approaches for improvingbiotic stress resistance in crop plants. Turk. J. Agric. For., 39, pp. 515-530. https://doi.org/10.3906/tar-1406-176
42. Ahmad, M., Zaffar, G., Razvi, S.M., Dar, Z.A., Mir, S.D., Bukhari, S.A. & Habib, M. (2014). Resilience of cereal crops to abiotic stress: a review. African. J. Biotechnology, 13, No. 29, pp. 2908-2921. https://doi.org/10.5897/AJB2013.13532
43. Ren, J., Chen, L., Sun, D., You, F. M., Wang, J., Peng, Y., Nevo, E., Beiles, A., Sun, D., Luo, M.C. & Pend, J. (2013). SNP-revealed genetic diversity in wild emmer wheat correlates with ecological factors. BMC Evol. Biol., 13, p. 169. https://doi.org/10.1186/1471-2148-13-169
44. Sukumaran, S., Reynolds, M.P. & Sansaloni, C. (2018). Genome-wide association genome-wide asso-ciation analyses identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought and heat stress environments. Front. Plant Sci., 9, pp. 1-16. https://doi.org/10.3389/fpls.2018.00081
45. Ayalew, H., Liu, H., Bцrner, A. Kobiliski, B., Liu, C. & Yan, G. (2018). Genome-wide association mapping of major root length QTLs under PEG induced water stress in wheat. Front. Plant. Sci., 9, pp. 1-9. https://doi.org/10.3389/fpls.2018.01759
46. Liu, Y., Liu, Y., Zhang, Q. Xie C., Li, H., Xia, X., He, W. & Qin, Y. (2018). Genome wide association analysis of quantitative trait loci for salinity tolerance related morphological indices in bread wheat. Euphytica, 214, p. 176. https://doi.org/10.1007/s10681-018-2265-5
47. Garg, D., Sareen, S., Dalal, S. & Tiwari, R. (2012). Heat shock protein based SNP marker for terminal heat stress in wheat (Triticum aestivum L.). Aust. J. Crop. Sci., 6, No. 11, pp. 1516-1521.
48. Khokhlova, L.P. (2016). Expression of stress protein genes and identification of molecular markers of plant resistance to high temperatures and drought, 158, No. 2, pp. 225-238 [in Russian]. https://doi.org/10.26907/2542-064X
49. Kochevenko, A., Jiang, Y., Seiler, C., Surdonja, K., Kollers, S., Reif, J.C., Korzun, V. & Graner, A. (2018). Identification of QTL hot spots for malting quality in two elite breeding lines with distinct tolerance to abiotic stress. BMC Plant Biol., 18, p. 106. https://doi.org/10.1186/s12870-018-1323-4
50. Tahmasebi, S., Heidari, B., Pakniyat, H. & McIntyre, C.L. (2016). Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome, 60. https://doi.org/10.1139/gen-2016-0017
51. Merchuk-Ovnat, L., Barak, V., Fahima, T., Ordon, F., Lidzbarsky, G.A., Krugman, T. & Saranga, Y. (2016). Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.00452
52. Liu, J., Xu, Z., Fan, X., Zhou, Q., Cao, J., Wang, F., Ji, G., Yang, Li, Feng, Bo. & Wang, Tao. (2018). A genome wide association study of wheat spike related traits in China. Front. Plant Sci., 9, pp. 1-14. https://doi.org/10.3389/fpls.2018.01584
53. Wang, S., Zhu, Y., Zhang, D. Shao. H., Liu, P., Hu, J.B., Zhang, H., Zhang, H.P., Chang, C., Lu, J., Xia, X.-C., Sun, G.L. & Ma, C.X. (2017). Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PLoS One, 12, pp. 1-14. https://doi.org/10.1371/journal.pone.0188662
54. Garcia, M., Eckermann, P., Haefele, S. & Satija, S. (2019). Genome-wide association mapping of grain yield in a diverse collection of spring wheat (Triticum aestivum L.) evaluated in southern Australia. PLoS One, 14, pp. 1-19. https://doi.org/10.1371/journal.pone.0211730
55. Daba, S.D., Tyagi, P., Brown-Guedira, G. & Mohammadi, M. (2018). Genome-wide association studies to identify loci and candidate genes controlling kernel weight and length in a historical United States wheat population. Front. Plant Sci., 9, pp. 1-14. https://doi.org/10.3389/fpls.2018.01045
56. Mourad, A.M.I., Sallam, A., Belamkar, V., Wegulo, S., Bowden, R., Jin, Y., Mandy, E., Bakheit, B., El-Wafaa, A., Poland, J. & Baenziger, P. (2018). Genome-wide association study for identification and validation of novel SNP markers for Sr6 stem rust resistance gene in bread wheat. Front. Plant Sci., 9, pp. 1-12. https://doi.org/10.3389/fpls.2018.00380
57. Eltaher, S., Sallam, A., Belamkar, V., Emara, H., Nower, A., Salem, K., Poland, J. & Baenziger, P. (2018). Genetic diversity and population structure of F3:6 Nebraska winter wheat genotypes using genotyping-by-sequencing. Front. Genet., 9, p. 76. https://doi.org/10.3389/fgene.2018.00076
58. Ando, K., Rynearson, S., Muleta, K.T., Gedamu, J., Girma B., Bosque-Perez, N.A., Chen, M.S. & Mike, O. (2018). Genome-wide associations for multiple pest resistances in a Northwestern United States elite spring wheat panel. PLoS One, 13, No. 2:e0191305. https://doi.org/10.1371/journal.pone.0191305
59. Wang, X.T., Zeng, J., Li Y., Rong, X.L., Sun, J.T. & Sun, T. (2015). Expression ofTaWRKY44, a wheat WRKY gene, in trans-genic tobacco confers multiple abiotic stresstolerances. Front. Plant Sci., 6, p. 61. https://doi.org/10.3389/fpls.2015.00615
60. Tishchenko, O.M. & Mykhalska, S.I. (2017). Transcription factors NAC-subfamily in improving crop resistance to osmotic streses. Plant Physiology and Genetics, 3, pp. 211-217 [in Ukrainian]. https://doi.org/10.15407/frg2017.03.211
61. Niu, C.F., We, W., Zhou, Q.Y., Tian, A.G., Hao, Y.J. & Zhang, W. (2012). Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in trans genic Arabidopsis plants. Plant Cell Environ, 35, No. 6, pp. 1156-1170. https://doi.org/10.1111/j.1365-3040.2012.02480.x
62. Qin, Y.X., Wang, M.C., Tian, Y.C., He, W.X., Han, L. & Xia, G.M. (2012). Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol. Biol. Rep., 39, No. 6, pp. 7183-7192. https://doi.org/10.1007/s11033-012-1550-y
63. Deng, X.M., Zhou, S.Y., Hu, W., Feng, J.L., Zhang, F., Chen, L.H., Huang, C., Luo, Q., He, Y., Yang, G. & He, G. (2013). Ectopic expressionof wheat TaCIPK14, encoding a calcineurin B-like protein-interacting protein kinase, confers salinity and cold tolerance in tobacco. Physiol. Plant, 149, No. 3, pp. 367-377. https://doi.org/10.1111/ppl.12046
64. Hu, W., Huang, C., Deng, X.M., Zhou, S.Y., Chen, L.H. & Li, Y. (2013). TaASR1, a transcriptionfactor gene in wheat, confers drought stresstolerance in transgenic tobacco. Plant Cell Environ., 36, No. 8, pp. 1449-1464. https://doi.org/10.1111/pce.12074
65. Licausi, F., Giorgi, F.M., Zenoni, S., Osti, F., Pezzotti, M. & Perata, P. (2010). Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genom., 11, p. 719. https://doi.org/10.1186/1471-2164-11-719
66. Sharoni, A.M., Nuruzzaman, M., Satoh, K., Shimizu, T., Kondoh, H., Sasaya, T., Choi, I.-R., Omura, T. & Kikuchi, S. (2010). Gene structures, classification and expression models of the AP2/EREBP transcription factorfamily in rice. Plant Cell Physiol., 52, pp. 344-360. https://doi.org/10.1093/pcp/pcq196
67. Rong, W., Qi L., Wang, A.Y., Ye, X.G., Du, L., Liang, H.X. & Zhang, Z. (2014). The ERF transcription factorTaERF3 promotes tolerance to salt anddrought stresses in wheat. Plant Biotechnol J., 12, No. 4, pp. 468-479. https://doi.org/10.1111/pbi.12153
68. Jun-Wei, W., Feng-Ping, Y., Xu-Qing, C., Liang, R.Q., Zhang, L.Q., Geng, D.M., Zhang, X.D., Song, Y.Z. & Zhang, G.S. (2006). Induced expression of DREB transcriptional factor and study on its physiological effects of drought tolerance in transgenic wheat. Acta Genetica Sinica, 33, No. 5, pp. 468-476. https://doi.org/10.1016/S0379-4172(06)60074-7
69. Morran, S., Eini, O., Pyvovarenko, T., Parent, B., Singh R., Ismagul, A, Eliby, S., Shirley, N., Langridge, P. & Lopato, S. (2011). Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol. J., 9, No. 2, pp. 230-249. https://doi.org/10.1111/j.1467-7652.2010.00547.x
70. Pellegrineschi, A., Reynolds, M., Pacheco, M., Brito R.M., Almeraya, R., Yamaguchi-Shinozaki, K. & Hoisington, D. (2004). Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome, 47, pp. 493-500. https://doi.org/10.1139/g03-140
71. Xu, G.-P., Waya, H.M., Richardsonb, T., Drenth, J., Joyce, P.A. & McIntyre, C.L. (2011). Overexpression of TaNAC69 Leads to Enhanced Transcript Levels of Stress Up-Regulated Genes and Dehydration Tolerance in Bread Wheat. Molecular. Plant, pp. 1-16. https://doi.org/10.1093/mp/ssr013
72. Zhang, L., Zhao, G., Jia, J., Liu, Xu & Kong, X. (2012). Molecular characterization of 60 isolated wheat MYB genes and analysis of heir expression during abiotic stress. Journal of Experimental Botany, 63, No. 1, pp. 203-214. https://doi.org/10.1093/jxb/err264
73. Rushton, D.L., Tripathi, P., Rabara, R.C., Lin, J., Ringler, P., Boken, A.K., Langum, T.J., Smidt, L., Boomsma, D.D., Emme, N.J., Chen, X., Finer, J.J. & Shen, Q.J. (2012). WRKY transcription factors: key components in abscisic acid signaling. Plant Biotechnol. J., 10, No. 1, pp. 2-11. https://doi.org/10.1111/j.1467-7652.2011.00634.x
74. Harris, J.C., Sornaraj, P., Taylor, M., Bazanova, N., Baumann, U., Lovell, B., Langridge, P., Lopato, S. & Hrmova, M. (2016). Molecular interactions of the g-clade homeodomain-leucine zipper class I transcription factors during the wheat response to water deficit. Plant Mol. Biol., 90, pp. 435-452. https://doi.org/10.1007/s11103-015-0427-6
75. Gao, S.Q., Chen, M., Xu, Z.S., Zhao, C.P., Li, L., Xu, H.J., Tang, Y., Zhao, X. & Ma, Y.Z. (2011). The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol. Biol., 75, No. 6, p. 537. https://doi.org/10.1007/s11103-011-9738-4
76. Alvarez, S., Roy Choudhury, S. & Pandey, S. (2014). Comparative quantitative proteomics analysi of the ABA response of roots of drought-sensitive and drought-tolerant wheat varietie sidentifies proteomic signatures of drought adaptability. J. Proteome Res., 13, pp. 1688-1701. https://doi.org/10.1021/pr401165b
77. Ding, Y., Tao, Y. & Zhu, C. (2013). Emerging roles of microRNAs in the mediation of drought stress response in plants. J. Exp. Bot., 64, pp. 3077-3086. https://doi.org/10.1093/jxb/ert164
78. Gupta, O.P., Meena, N. L., Sharma, I. & Sharma, P. (2014). Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Mol. Biol. Rep., 41, pp. 4623-4629. https://doi.org/10.1007/s11033-014-3333-0
79. Ma, X., Xin, Z., Wang, Z., Yang, Q., Guo, S. & Guo, X. (2015). Identification and comparative analysis of differentially expressed miRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress. BMC Plant Biol., 15, p. 21. https://doi.org/10.1186/s12870-015-0413-9
80. Proels, R.K. & Huckelhoven, R. (2014). Cell-wall invertases, key enzymes in the modulation of plant metabolism during defence responses. Mol. Plant Pathol., 15, pp. 858-864. https://doi.org/10.1111/mpp.12139
81. Hu, M.Y., Li, H., Pang, J.Z., Liu, Q., Zhang, Y.J. & Sun, L.J. (2015). Over expression of sucrose transporter (TaSUT1A) improves drough ttolerance in trans genic wheat. Sci. Agric. Sin., 48, No. 8, pp. 1473-1483. https://doi.org/10.3864/j.issn.0578-1752.2015.08.02
82. Rong, W., Qi, L., Wang, A.Y., Ye, X.G., Du, L. & Liang, H. X. (2014). The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol. J., 12, No. 4, pp. 468-479. https://doi.org/10.1111/pbi.12153
83. Kang, G.Z., Ma, H.Z., Liu, G.Q., Han, Q.X., Li, C.W. & Guo, T.C. (2013). Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat. Mol. Gen. Genomics, 288, No. 11, pp. 591-599. https://doi.org/10.1007/s00438-013-0773-5
84. Takahashi, F., Kuromori, T., Sato, H. & Shinozaki, K. (2018). Regulatory Gene Net works in Drought Stress Responses and Resistance in Plants. In Survival Strategies in Extreme Cold and Desiccation; Springer: Berlin/Heidelberg, Germany, pp. 189-214. https://doi.org/10.1007/978-981-13-1244-1_11
85. Park, S.-Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A. & Tsz-Fung, F.C. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 324, pp. 1068-1071. https://doi.org/10.1126/science.1173041
86. Qin, N., Xu, W.G., Hu, L., Li, Y., Wang, H.W. & Qi, X.L. (2016). Drought tolerance and proteomic studies of transgenic wheat containing the maize C phosphorenolpyruvatecarboxylase (PEPC) gene. Protoplasma, 253, No. 6, pp. 1503-1512. https://doi.org/10.1007/s00709-015-0906-2
87. Bahieldin, A., Mahfouz, H. T., Eissa, H. F., Saleh, O.M., Ramadan, A.M., Ahmed, I.A., Dyer, W.E., El-Itriby, H.A. & Madkour, M.A. (2005). Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol. Plant., 123, No. 4, pp. 421-427. https://doi.org/10.1111/j.1399-3054.2005.00470.x
88. Kolupaev, Yu. E., Vainer, A.A. & Yastreb, T.O. (2014). Proline: physiological functions and regulation of the content in plants under stress conditions Newsletter. Kharkiv. nat. agrarian. un-tu. Ser. Biol., No. 2, pp. 6-22 [in Russian].
89. Vendruscolo, E., Schuster, I. & Pileggi, M. (2007). Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Plant Physiol., 164, No. 10, pp. 1367-1376. https://doi.org/10.1016/j.jplph.2007.05.001
90. Mykhalska, S.I., Komisarenko, A.G. & Kurchii, V.M. (2021). Genes of proline metabolism in biotechnology of increasing wheat osmostability. Factors of experimental evolution of organisms, 28, pp. 94-99 [in Ukrainian]. https://doi.org/10.7124/FEEO.v22.964
91. Dubrovna, O.V., Stasik, O.O., Priadkina, G.O., Zborivska, O.V. & Sokolovska-Sergiienko, O.G. (2020). Resistance of genetically modified wheat plants, containing a double-stranded RNA suppressor of the proline dehydrogenase gene, to soil moisture deficiency. Agricultural. Science and Practice, 7, No. 2, pp. 24-34. https://doi.org/10.15407/agrisp7.02.024
92. Sergeeva, L.E., Mykhalska, S.I., Kurchiy, V.M. & Tishchenko, E.N. (2015). Free proline content in maize seedlings as an indicator of rapid responses to lethal osmotic stress in vitro. Fiziologiya rasteniy i genetika, 47, No. 6, pp. 491-496 [in Ukrainian].
93. Yan, L., Loukoianov, A. & Blechl, A. (2004). The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 303, No. 5664, pp. 1640-1644. https://doi.org/10.1126/science.1094305
94. Bednarek, J., Bowloughs, A., Girousse, C., Ravel, C., Tassy, C., Barret, P., Bouzidi, M. & Mouzeyar, S. (2012). Suppression of the TaGW2 gene by RNA interference leads to a decrease in grain size and weight in wheat. J. Exp. Bot., 63, No. 16, pp. 5945-5955. https://doi.org/10.1093/jxb/ers249
95. Altenbach, S.B., Tanaka, C.K. & Seabourn, B.W. (2014). Silencing of omega-5 gliadins in transgenic wheat eliminates a major source of environmental variability and improves dough mixing properties of flour. BMC Plant Biology, 14, No. 393, p. 580. https://doi.org/10.1186/s12870-014-0393-1
96. Barro, F., Iehisa, J.C. & Gimenez, M.J. (2016). Targeting of prolamins by RNAi in bread wheat: effectiveness of seven silencing-fragment combinations for obtaining lines devoid of coeliac disease epitopes from highly immunogenic gliadins. Plant Biotechnol. J., 14, No. 3, pp. 986-996. https://doi.org/10.1111/pbi.12455
97. Song, X., Gu, K. & Duan, X. (2018). A myosin5 dsRNA that reduces the fungicide resistance and pathogenicity of fusarium asiaticum. Pesticide Biochem. Physiol., 150, pp. 1-9. https://doi.org/10.1016/j.pestbp.2018.07.004
98. Koeppel, I., Hertig, C., Hoffie, R. & Kumlehn, J. (2019). Cas endonuclease technology - a quantum leap in the advancement of barley and wheat genetic engineering. Int. J. Mol. Sci., 20, No. 11, pp. 26-47. https://doi.org/10.3390/ijms20112647
99. Upadhyay, S.K., Kumar, J., Alok, A. & Tuli, R. (2013). RNA-guided genome editing for target gene mutations in wheat. G3: Genes, Genomes, Genetics, Genet., 3, No. 12, pp. 2233-2238. https://doi.org/10.1534/g3.113.008847
100. Wang, Y., Cheng, X., Shan, Q., Zhang, Yi., Liu, J., Gao, C. & Qiu, J. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnol., 32, No. 9, pp. 947-951. https://doi.org/10.1038/nbt.2969
101. Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C. & Tang, D. (2017). Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J., 91, No. 4, pp. 714-724. https://doi.org/10.1111/tpj.13599
102. Nalam, V.J., Alam, S., Keereetaweep, J., Venables, B., Burdan, D., Lee, H., Trick, H., Sarowar, S., Makandar, R. & Shah, J. (2015). Facilitation of fusarium graminearum infection by 9-Lipoxygenases in Arabidopsis and wheat. Molecular Plant-Microbe Int., 28, No. 10, pp. 1142-1152. https://doi.org/10.1094/MPMI-04-15-0096-R
103. Sanchez-Leon, S., Gil-Humanes, J., Ozuna, C.V., Gimйnez, M.J., Sousa, C., Voytas, D.F. & Barro, F. (2018). Low-gluten, non transgenic wheat engineere dwith CRISPR/Cas9. Plant Biotechnol. J., 16, No. 4, pp. 902-910. https://doi.org/10.1111/pbi.12837
104. Jouanin, A., Schaart, J.G., Boyd, L.A., Cockram, J., Leigh, F.J., Bates, R., Wallington, E.J., Visser, R.G.F. & Smulders, M.J.M. (2019). Outlook for coeliac disease patients: towards bread wheat with hypoimmunogenic gluten by gene editing of a- and g-gliadin gene families. BMC plant biology, 19, No. 1, p. 333. https://doi.org/10.1186/s12870-019-1889-5
105. Nikolai, Borisjuk, Olena, Kishchenko, Serik, Eliby, Carly, Schramm, Peter, Anderson, Satyvaldy, Jatayev, Akhylbek, Kurishbayev & Yuri Shavrukov. (2019). Genetic Modification for Wheat Improvement: From Transgenesis to Genome Editing Biomed Res Int., 6216304. https://doi.org/10.1155/2019/6216304
106. Abe, F., Haque, E., Hisano, H., Tanaka, T., Kamiya, Y., Mikami, M., Kawaura, K., Endo, M., Onishi, K., Hayashi, T. & Sato, K. (2019). Genome-edited triple-recessive mutation alters seed dormancy in wheat. Cell Reports, 28, No. 5, pp. 1362-1369. e4. https://doi.org/10.1016/j.celrep.2019.06.090
107. Wang, W., Simmonds, J., Pan, Q., Davidson, D., He, F., Battal, A., Akhunova, A., Trick, H.N., Uauy, C. & Akhunov, E. (2018). Geneediting and mutagenesis revealinter-cultivar differences and additivity in the contribution of TaGW2 homoeologues togra in size and weightin wheat. Theoretical and Applied Genetics, 131, No. 11, pp. 2463-2475. https://doi.org/10.1007/s00122-018-3166-7
108. Liang, Z., Chen, K., Yan, Y., Zhang, Y. & Gao, C. (2018). Genotyping genome-edited mutations in plants using CRISPR ribonucleo protein complexes. Plant Biotechnol. J., 16, No. 12, pp. 2053-2062. https://doi.org/10.1111/pbi.12938