Fiziol. rast. genet. 2022, vol. 54, no. 3, 187-213, doi:

Actual directions of modern biotechnologies of wheat

Mykhalska S.I., Komisarenko A.G.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine  31/17 Vasylkivska St., Kyiv, 03022, Ukraine

Wheat (Triticum aestivum L.) is one of the most important cereals, which is a key component of the human diet, the main component of animal feed and seeds for industrial purposes. Due to the growing population in the world, there is an urgent need to enhance the production potential and yield of wheat. In addition, climate change requires increasing the adaptive potential of plants to stressful weather conditions. Therefore, improving wheat in terms of biotic and abiotic resistance to stress, quality and yield characteristics are the main tasks of breeders and geneticists. To overcome the negative impact of biotic and abiotic factors that can lead to a significant reduction in the yield of this crop, we can use genetic engineering technologies and select genotypes with economically important traits, based on the study of genetic polymorphism. The review considers modern biotechnological approaches to improve the economic and valuable characteristics of wheat. Promising genetic engineering technologies to increase the productivity and adaptability of wheat to abiotic stresses are described. Possibilities of marker-associated selection in the process of creating wheat varieties with unique combinations of genes that provide adaptation to growing conditions and the necessary level of development of useful technological traits are highlighted. Examples of creating new forms of wheat with increased resistance to stressors through genetic modification are given. The article focuses on modern technologies of targeted genome editing using the CRISPR/Cas9 system, and obtaining modified wheat plants without the production of transgenic proteins using regulatory mechanisms of gene expression by RNA interference.

Keywords: Triticum aestivum L., stress resistance, productivity, genetic engineering technologies, marker-associated selection, genetic modification, RNA interference

Fiziol. rast. genet.
2022, vol. 54, no. 3, 187-213

Full text and supplemented materials

Free full text: PDF  


1. Shewry, P.R. (2009). Wheat. J. Exp. Bot., 60, pp. 1537-1553.

2. Morgun, V.V., Dubrovna, O.V. & Morgun, B.V. (2016). Modern biotechnologies for stress-resistant wheat plants. Fiziologiya rasteniy i genetika, 48, No. 3, pp. 196-213 [in Ukrainian].


4. Aggarwal, P.K. (2008). Global climate change and Indian agriculture: Impacts, adaptation and mitigation. Indian. J. Agr. Sci., 78, pp. 911-919.

5. Rezaei, E.E., Siebert, S., Manderscheid, R., Muller, J., Mahrookashani, A., Ehrenpfordt, B., Haensch, J., Weigeld, H.-J. & Ewert, F. (2018). Quantifying the response of wheat yields to heat stress: The role of the experimental setup. Field Crops Res., 217, pp. 93-103.

6. Balla, K., Karsai, I., Bynis, P., Kiss, T., Berki, Z., Horvath, Б., Mayer, M., Bencze, S. & Veisz, O. (2019). Heat stress responses in a large set of winter wheat cultivars (Triticum aestivum L.) depend on the timing and duration of stress. PLoS One, 14, p. e0222639.

7. Raza, A., Razzaq, A., Mehmood, S.S., Zou, X., Zhang, X., Lv, Y. & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants, 8, p. 34.

8. Soba, D., Ben Mariem, S., Fuertes-Mendizabal, T., Mendez-Espinoza, A.M., Gilard, F., Gonzalez-Murua, C., Irigoyen, J.J., Tcherkez, G. & Aranjuelo, I. (2019). Metabolic effects of elevated CO2 on wheat grain development and composition. J. Agric. Food. Chem., 67, pp. 8441-8451.

9. Brown, L. (2011).The great food crisis of 2011. Foreign Policy, 10, pp. 1-5. Available at:

10. Bowne, J.B., Erwin, T.A., Juttner, J., Jairus, B., Bowne, Tim A., Erwin, Juan Juttner, J., Schnurbusch, T., Langridge, P., Bacic, A. & Roessner, U. (2012). Drought responses of leaf tissues from wheat culti-vars of differing drought tolerance at the metabolite. Level. Mol. Plant, 5, pp. 418-429.

11. Sallam, A., Mourad, A.M.I., Hussain, W. & Baenziger, S.P. (2018). Genetic variation in drought tolerance at seedling stage and grain yield in low rainfall environments in wheat (Triticum aestivum L.). Euphytica, 214, 169 p.

12. Ahmed, H.G.M.D., Li, M., Khan, S.H. & Kashif, M. (2019). Early selection of bread wheat genotypes using morphological and photosynthetic attributes conferring drought tolerance. J. Integrat. Agric., 18, pp. 2483-2491.

13. Rybalka, O.I. (2011). Wheat quality and its improvement. Kyiv: Logos [in Ukrainian].

14. Sivolap, Yu.M. (2013). Molecular markers and selection. Cytology and genetics, 47, No. 3. pp. 71-80 [in Russian].

15. Khan, H. (2019). Genetic improvement for end-use quality in wheat. Springer Nature. Switzerland.

16. Miedaner, T. & Korzun, V. (2012). Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology, 102, pp. 560-566.

17. Kozub, N.O., Sozinov, I.O., Karelov, A.V., Blum, Ya.B. & Sozinov, O.O. (2017). Variety of Ukrainian varieties of soft winter wheat by loci of reserve proteins and molecular markers of disease resistance genes. Cytology and genetics, 51, No. 2, pp. 59-73 [in Ukrainian].

18. Morgun, V.V. & Rybalka, O.I. (2017). Strategy for genetic improvement of cereals in order to ensure food security, therapeutic and preventive nutrition and the needs of the processing industry. Bulletin of the NAS of Ukraine, 128, pp. 54-64 [in Ukrainian].

19. Matthies, I.E., Malosetti, M. & Rцder, M.S. (2014). Genome-wide association mapping for kernel and malting quality traits using historical european barley records. PLoS One, 9, No. 11, pp. 112-119.

20. Khan, M.K., Pandey, A., Choudhary, S., Saumya, Choudhary, Hakki, E.E., Akkaya, M.S. & Thomas, G. (2014). From RFLP to DArT: molecular tools for wheat (Triticum spp.) diversity analysis. Genet. Resour. Crop. Evol., 61, pp. 1001-1032.

21. He, J., Zhao, X., Laroche, A. Lu, Z.-H., Liu, H. & Li, Z. (2014). Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci., 5, pp. 1-8.

22. Gulaeva, N.V., Chesnokov, Yu.V., Shevchenko, S.N., Zueva, A.A. & Menibaev, A.I. (2018). Practical application of molecular markers in wheat breeding. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences, 20, No. 2 (4), pp. 726-731 [in Russian].

23. Morgun, B.V. & Tishchenko, E.N. (2014). Molecular biotechnology to improve the resistance of cultivated cereals to osmotic stress. Kyiv: Logos [in Russian].

24. Shrawat, A.K. & Armstrong, C.L. (2018). Development and application of genetic engineering for wheat improvement. Critical Reviews in Plant Sciences, 37, No. 5, pp. 335-421.

25. Cheng, M., Fry, J.E., Pang, S., Zhou, H., Hironaka, C.M., Duncan, D.R., Conner, T.W. & Wan, Y. (1997). Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol., 115, pp. 971-980.

26. Dubrovna, O.V. & Morgun, B.V. (2018). Modern Agrobacterium-mediated transformation of wheat. Fiziologiya rasteniy i genetika, 50, No. 3, pp. 187-217 [in Ukrainian].

27. Sergeeva, L.E., Mykhalska, S.I. & Komisarenko, A.G. (2019). Modern biotechnologies for increasing plant resistance to osmotic stresses. Kyiv: Kondor [in Russian].

28. Wang, K., Riaz, B. & Ye, X. (2018). Wheat genome editing expedited by efficient transformation techniques: progress and perspectives. The Crop Journal, 6, No.1, pp. 22-31.

29. Hensel, G., Marthe, C. & Kumlehn, J. (2017). Agrobacterium-mediated transformation of wheat using immature embryos. In Bhalla, P. & Singh, M. (Eds.). Wheat Biotechnology: Methods in Molecular Biology, (pp. 129-139), 1679.

30. Supartana, P., Shimizu, T., Nogawa, M., Shioiri, H., Nakaqima, T., Haramoto, N., Nozue, M. & Koqima, M. (2006). Development of simple end efficient in Planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. J. Bio. Bioeng., 102, No. 3, pp. 162-170.

31. Chumakov, M.I. & Moiseeva, E.M. (2012). Technology of agrobacterial transformation of plants in planta. Biotechnology, 1, pp. 8-20 [in Russian].

32. Mykhalska, S.I., Komisarenko, A.G., Kurchii, V.M. & Tishchenko, O.M. (2018). Genetic transformation in planta of winter wheat (Triticum aestivum L.). Faktory eksperym. evolyutsiyi orhanizmiv, 22, pp. 293-298 [in Ukrainian].

33. Curaba, J., Singh, M.B. & Bhalla, P.L. (2014). miRNAs in the crosstalk between phytohormone signalling pathways. J. Exp. Bot., 65, pp. 1425-1438.

34. Budak, H., Khan, Z. & Kantar, M. (2015b). History and current status of wheat miRNAs using next-generation sequencing and their roles in development and stress. Brief. Funct. Genomics, 14, pp. 189-198.

35. Zhao, X.Y., Hong, P., Wu, J.Y. Chen, X.B., Ye, X.G., Pan, Y.Y., Wang, J. & Zhang, X.S. (2016). The tae-miR408-mediated control of TaTOC1 genes transcription is required for the regulation of heading time in wheat. Plant Physiology, 170, pp. 1578-1594.

36. Morgun, V.V., Dubrovna, O.V. & Morgun, B.V. (2017). Obtaining stress-resistant wheat plants by biotechnological methods. Plant physiology: achievements and new directions of development. Kyiv: Logos, pp. 393-412 [in Ukrainian].

37. Demirci, Y., Zhang, B. & Unver, T. (2018). CRISPR/Cas9: an RNA-guided highly precise synthetic tool for plant genome editing. Journal of Cellular Physiology, 233, No. 3, pp. 1844-1859.

38. Zhang, Z., Hua, L., Gupta, A., Tricoli, D., Edwards, K.J., Yang, B. & Li, W. (2019). Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genomee diting. Plant Biotechnology Journal, 17, No. 8, pp. 1623-1635.

39. Kim, D., Alptekin, B. & Budak, H. (2018). CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics, 18, pp. 31-41.

40. Barlow, K.M., Christy, B.P., O'Leary, G.J., Riffkin, P.A. & Nuttall, J.G. (2015). Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Research, 171, pp. 109-119.

41. Hussain, B. (2015). Modernization in plant breeding approaches for improvingbiotic stress resistance in crop plants. Turk. J. Agric. For., 39, pp. 515-530.

42. Ahmad, M., Zaffar, G., Razvi, S.M., Dar, Z.A., Mir, S.D., Bukhari, S.A. & Habib, M. (2014). Resilience of cereal crops to abiotic stress: a review. African. J. Biotechnology, 13, No. 29, pp. 2908-2921.

43. Ren, J., Chen, L., Sun, D., You, F. M., Wang, J., Peng, Y., Nevo, E., Beiles, A., Sun, D., Luo, M.C. & Pend, J. (2013). SNP-revealed genetic diversity in wild emmer wheat correlates with ecological factors. BMC Evol. Biol., 13, p. 169.

44. Sukumaran, S., Reynolds, M.P. & Sansaloni, C. (2018). Genome-wide association genome-wide asso-ciation analyses identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought and heat stress environments. Front. Plant Sci., 9, pp. 1-16.

45. Ayalew, H., Liu, H., Bцrner, A. Kobiliski, B., Liu, C. & Yan, G. (2018). Genome-wide association mapping of major root length QTLs under PEG induced water stress in wheat. Front. Plant. Sci., 9, pp. 1-9.

46. Liu, Y., Liu, Y., Zhang, Q. Xie C., Li, H., Xia, X., He, W. & Qin, Y. (2018). Genome wide association analysis of quantitative trait loci for salinity tolerance related morphological indices in bread wheat. Euphytica, 214, p. 176.

47. Garg, D., Sareen, S., Dalal, S. & Tiwari, R. (2012). Heat shock protein based SNP marker for terminal heat stress in wheat (Triticum aestivum L.). Aust. J. Crop. Sci., 6, No. 11, pp. 1516-1521.

48. Khokhlova, L.P. (2016). Expression of stress protein genes and identification of molecular markers of plant resistance to high temperatures and drought, 158, No. 2, pp. 225-238 [in Russian].

49. Kochevenko, A., Jiang, Y., Seiler, C., Surdonja, K., Kollers, S., Reif, J.C., Korzun, V. & Graner, A. (2018). Identification of QTL hot spots for malting quality in two elite breeding lines with distinct tolerance to abiotic stress. BMC Plant Biol., 18, p. 106.

50. Tahmasebi, S., Heidari, B., Pakniyat, H. & McIntyre, C.L. (2016). Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome, 60.

51. Merchuk-Ovnat, L., Barak, V., Fahima, T., Ordon, F., Lidzbarsky, G.A., Krugman, T. & Saranga, Y. (2016). Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars. Front. Plant Sci.

52. Liu, J., Xu, Z., Fan, X., Zhou, Q., Cao, J., Wang, F., Ji, G., Yang, Li, Feng, Bo. & Wang, Tao. (2018). A genome wide association study of wheat spike related traits in China. Front. Plant Sci., 9, pp. 1-14.

53. Wang, S., Zhu, Y., Zhang, D. Shao. H., Liu, P., Hu, J.B., Zhang, H., Zhang, H.P., Chang, C., Lu, J., Xia, X.-C., Sun, G.L. & Ma, C.X. (2017). Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PLoS One, 12, pp. 1-14.

54. Garcia, M., Eckermann, P., Haefele, S. & Satija, S. (2019). Genome-wide association mapping of grain yield in a diverse collection of spring wheat (Triticum aestivum L.) evaluated in southern Australia. PLoS One, 14, pp. 1-19.

55. Daba, S.D., Tyagi, P., Brown-Guedira, G. & Mohammadi, M. (2018). Genome-wide association studies to identify loci and candidate genes controlling kernel weight and length in a historical United States wheat population. Front. Plant Sci., 9, pp. 1-14.

56. Mourad, A.M.I., Sallam, A., Belamkar, V., Wegulo, S., Bowden, R., Jin, Y., Mandy, E., Bakheit, B., El-Wafaa, A., Poland, J. & Baenziger, P. (2018). Genome-wide association study for identification and validation of novel SNP markers for Sr6 stem rust resistance gene in bread wheat. Front. Plant Sci., 9, pp. 1-12.

57. Eltaher, S., Sallam, A., Belamkar, V., Emara, H., Nower, A., Salem, K., Poland, J. & Baenziger, P. (2018). Genetic diversity and population structure of F3:6 Nebraska winter wheat genotypes using genotyping-by-sequencing. Front. Genet., 9, p. 76.

58. Ando, K., Rynearson, S., Muleta, K.T., Gedamu, J., Girma B., Bosque-Perez, N.A., Chen, M.S. & Mike, O. (2018). Genome-wide associations for multiple pest resistances in a Northwestern United States elite spring wheat panel. PLoS One, 13, No. 2:e0191305.

59. Wang, X.T., Zeng, J., Li Y., Rong, X.L., Sun, J.T. & Sun, T. (2015). Expression ofTaWRKY44, a wheat WRKY gene, in trans-genic tobacco confers multiple abiotic stresstolerances. Front. Plant Sci., 6, p. 61.

60. Tishchenko, O.M. & Mykhalska, S.I. (2017). Transcription factors NAC-subfamily in improving crop resistance to osmotic streses. Plant Physiology and Genetics, 3, pp. 211-217 [in Ukrainian].

61. Niu, C.F., We, W., Zhou, Q.Y., Tian, A.G., Hao, Y.J. & Zhang, W. (2012). Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in trans genic Arabidopsis plants. Plant Cell Environ, 35, No. 6, pp. 1156-1170.

62. Qin, Y.X., Wang, M.C., Tian, Y.C., He, W.X., Han, L. & Xia, G.M. (2012). Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol. Biol. Rep., 39, No. 6, pp. 7183-7192.

63. Deng, X.M., Zhou, S.Y., Hu, W., Feng, J.L., Zhang, F., Chen, L.H., Huang, C., Luo, Q., He, Y., Yang, G. & He, G. (2013). Ectopic expressionof wheat TaCIPK14, encoding a calcineurin B-like protein-interacting protein kinase, confers salinity and cold tolerance in tobacco. Physiol. Plant, 149, No. 3, pp. 367-377.

64. Hu, W., Huang, C., Deng, X.M., Zhou, S.Y., Chen, L.H. & Li, Y. (2013). TaASR1, a transcriptionfactor gene in wheat, confers drought stresstolerance in transgenic tobacco. Plant Cell Environ., 36, No. 8, pp. 1449-1464.

65. Licausi, F., Giorgi, F.M., Zenoni, S., Osti, F., Pezzotti, M. & Perata, P. (2010). Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genom., 11, p. 719.

66. Sharoni, A.M., Nuruzzaman, M., Satoh, K., Shimizu, T., Kondoh, H., Sasaya, T., Choi, I.-R., Omura, T. & Kikuchi, S. (2010). Gene structures, classification and expression models of the AP2/EREBP transcription factorfamily in rice. Plant Cell Physiol., 52, pp. 344-360.

67. Rong, W., Qi L., Wang, A.Y., Ye, X.G., Du, L., Liang, H.X. & Zhang, Z. (2014). The ERF transcription factorTaERF3 promotes tolerance to salt anddrought stresses in wheat. Plant Biotechnol J., 12, No. 4, pp. 468-479.

68. Jun-Wei, W., Feng-Ping, Y., Xu-Qing, C., Liang, R.Q., Zhang, L.Q., Geng, D.M., Zhang, X.D., Song, Y.Z. & Zhang, G.S. (2006). Induced expression of DREB transcriptional factor and study on its physiological effects of drought tolerance in transgenic wheat. Acta Genetica Sinica, 33, No. 5, pp. 468-476.

69. Morran, S., Eini, O., Pyvovarenko, T., Parent, B., Singh R., Ismagul, A, Eliby, S., Shirley, N., Langridge, P. & Lopato, S. (2011). Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol. J., 9, No. 2, pp. 230-249.

70. Pellegrineschi, A., Reynolds, M., Pacheco, M., Brito R.M., Almeraya, R., Yamaguchi-Shinozaki, K. & Hoisington, D. (2004). Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome, 47, pp. 493-500.

71. Xu, G.-P., Waya, H.M., Richardsonb, T., Drenth, J., Joyce, P.A. & McIntyre, C.L. (2011). Overexpression of TaNAC69 Leads to Enhanced Transcript Levels of Stress Up-Regulated Genes and Dehydration Tolerance in Bread Wheat. Molecular. Plant, pp. 1-16.

72. Zhang, L., Zhao, G., Jia, J., Liu, Xu & Kong, X. (2012). Molecular characterization of 60 isolated wheat MYB genes and analysis of heir expression during abiotic stress. Journal of Experimental Botany, 63, No. 1, pp. 203-214.

73. Rushton, D.L., Tripathi, P., Rabara, R.C., Lin, J., Ringler, P., Boken, A.K., Langum, T.J., Smidt, L., Boomsma, D.D., Emme, N.J., Chen, X., Finer, J.J. & Shen, Q.J. (2012). WRKY transcription factors: key components in abscisic acid signaling. Plant Biotechnol. J., 10, No. 1, pp. 2-11.

74. Harris, J.C., Sornaraj, P., Taylor, M., Bazanova, N., Baumann, U., Lovell, B., Langridge, P., Lopato, S. & Hrmova, M. (2016). Molecular interactions of the g-clade homeodomain-leucine zipper class I transcription factors during the wheat response to water deficit. Plant Mol. Biol., 90, pp. 435-452.

75. Gao, S.Q., Chen, M., Xu, Z.S., Zhao, C.P., Li, L., Xu, H.J., Tang, Y., Zhao, X. & Ma, Y.Z. (2011). The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol. Biol., 75, No. 6, p. 537.

76. Alvarez, S., Roy Choudhury, S. & Pandey, S. (2014). Comparative quantitative proteomics analysi of the ABA response of roots of drought-sensitive and drought-tolerant wheat varietie sidentifies proteomic signatures of drought adaptability. J. Proteome Res., 13, pp. 1688-1701.

77. Ding, Y., Tao, Y. & Zhu, C. (2013). Emerging roles of microRNAs in the mediation of drought stress response in plants. J. Exp. Bot., 64, pp. 3077-3086.

78. Gupta, O.P., Meena, N. L., Sharma, I. & Sharma, P. (2014). Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Mol. Biol. Rep., 41, pp. 4623-4629.

79. Ma, X., Xin, Z., Wang, Z., Yang, Q., Guo, S. & Guo, X. (2015). Identification and comparative analysis of differentially expressed miRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress. BMC Plant Biol., 15, p. 21.

80. Proels, R.K. & Huckelhoven, R. (2014). Cell-wall invertases, key enzymes in the modulation of plant metabolism during defence responses. Mol. Plant Pathol., 15, pp. 858-864.

81. Hu, M.Y., Li, H., Pang, J.Z., Liu, Q., Zhang, Y.J. & Sun, L.J. (2015). Over expression of sucrose transporter (TaSUT1A) improves drough ttolerance in trans genic wheat. Sci. Agric. Sin., 48, No. 8, pp. 1473-1483.

82. Rong, W., Qi, L., Wang, A.Y., Ye, X.G., Du, L. & Liang, H. X. (2014). The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol. J., 12, No. 4, pp. 468-479.

83. Kang, G.Z., Ma, H.Z., Liu, G.Q., Han, Q.X., Li, C.W. & Guo, T.C. (2013). Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat. Mol. Gen. Genomics, 288, No. 11, pp. 591-599.

84. Takahashi, F., Kuromori, T., Sato, H. & Shinozaki, K. (2018). Regulatory Gene Net works in Drought Stress Responses and Resistance in Plants. In Survival Strategies in Extreme Cold and Desiccation; Springer: Berlin/Heidelberg, Germany, pp. 189-214.

85. Park, S.-Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A. & Tsz-Fung, F.C. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 324, pp. 1068-1071.

86. Qin, N., Xu, W.G., Hu, L., Li, Y., Wang, H.W. & Qi, X.L. (2016). Drought tolerance and proteomic studies of transgenic wheat containing the maize C phosphorenolpyruvatecarboxylase (PEPC) gene. Protoplasma, 253, No. 6, pp. 1503-1512.

87. Bahieldin, A., Mahfouz, H. T., Eissa, H. F., Saleh, O.M., Ramadan, A.M., Ahmed, I.A., Dyer, W.E., El-Itriby, H.A. & Madkour, M.A. (2005). Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol. Plant., 123, No. 4, pp. 421-427.

88. Kolupaev, Yu. E., Vainer, A.A. & Yastreb, T.O. (2014). Proline: physiological functions and regulation of the content in plants under stress conditions Newsletter. Kharkiv. nat. agrarian. un-tu. Ser. Biol., No. 2, pp. 6-22 [in Russian].

89. Vendruscolo, E., Schuster, I. & Pileggi, M. (2007). Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Plant Physiol., 164, No. 10, pp. 1367-1376.

90. Mykhalska, S.I., Komisarenko, A.G. & Kurchii, V.M. (2021). Genes of proline metabolism in biotechnology of increasing wheat osmostability. Factors of experimental evolution of organisms, 28, pp. 94-99 [in Ukrainian].

91. Dubrovna, O.V., Stasik, O.O., Priadkina, G.O., Zborivska, O.V. & Sokolovska-Sergiienko, O.G. (2020). Resistance of genetically modified wheat plants, containing a double-stranded RNA suppressor of the proline dehydrogenase gene, to soil moisture deficiency. Agricultural. Science and Practice, 7, No. 2, pp. 24-34.

92. Sergeeva, L.E., Mykhalska, S.I., Kurchiy, V.M. & Tishchenko, E.N. (2015). Free proline content in maize seedlings as an indicator of rapid responses to lethal osmotic stress in vitro. Fiziologiya rasteniy i genetika, 47, No. 6, pp. 491-496 [in Ukrainian].

93. Yan, L., Loukoianov, A. & Blechl, A. (2004). The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 303, No. 5664, pp. 1640-1644.

94. Bednarek, J., Bowloughs, A., Girousse, C., Ravel, C., Tassy, C., Barret, P., Bouzidi, M. & Mouzeyar, S. (2012). Suppression of the TaGW2 gene by RNA interference leads to a decrease in grain size and weight in wheat. J. Exp. Bot., 63, No. 16, pp. 5945-5955.

95. Altenbach, S.B., Tanaka, C.K. & Seabourn, B.W. (2014). Silencing of omega-5 gliadins in transgenic wheat eliminates a major source of environmental variability and improves dough mixing properties of flour. BMC Plant Biology, 14, No. 393, p. 580.

96. Barro, F., Iehisa, J.C. & Gimenez, M.J. (2016). Targeting of prolamins by RNAi in bread wheat: effectiveness of seven silencing-fragment combinations for obtaining lines devoid of coeliac disease epitopes from highly immunogenic gliadins. Plant Biotechnol. J., 14, No. 3, pp. 986-996.

97. Song, X., Gu, K. & Duan, X. (2018). A myosin5 dsRNA that reduces the fungicide resistance and pathogenicity of fusarium asiaticum. Pesticide Biochem. Physiol., 150, pp. 1-9.

98. Koeppel, I., Hertig, C., Hoffie, R. & Kumlehn, J. (2019). Cas endonuclease technology - a quantum leap in the advancement of barley and wheat genetic engineering. Int. J. Mol. Sci., 20, No. 11, pp. 26-47.

99. Upadhyay, S.K., Kumar, J., Alok, A. & Tuli, R. (2013). RNA-guided genome editing for target gene mutations in wheat. G3: Genes, Genomes, Genetics, Genet., 3, No. 12, pp. 2233-2238.

100. Wang, Y., Cheng, X., Shan, Q., Zhang, Yi., Liu, J., Gao, C. & Qiu, J. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnol., 32, No. 9, pp. 947-951.

101. Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C. & Tang, D. (2017). Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J., 91, No. 4, pp. 714-724.

102. Nalam, V.J., Alam, S., Keereetaweep, J., Venables, B., Burdan, D., Lee, H., Trick, H., Sarowar, S., Makandar, R. & Shah, J. (2015). Facilitation of fusarium graminearum infection by 9-Lipoxygenases in Arabidopsis and wheat. Molecular Plant-Microbe Int., 28, No. 10, pp. 1142-1152.

103. Sanchez-Leon, S., Gil-Humanes, J., Ozuna, C.V., Gimйnez, M.J., Sousa, C., Voytas, D.F. & Barro, F. (2018). Low-gluten, non transgenic wheat engineere dwith CRISPR/Cas9. Plant Biotechnol. J., 16, No. 4, pp. 902-910.

104. Jouanin, A., Schaart, J.G., Boyd, L.A., Cockram, J., Leigh, F.J., Bates, R., Wallington, E.J., Visser, R.G.F. & Smulders, M.J.M. (2019). Outlook for coeliac disease patients: towards bread wheat with hypoimmunogenic gluten by gene editing of a- and g-gliadin gene families. BMC plant biology, 19, No. 1, p. 333.

105. Nikolai, Borisjuk, Olena, Kishchenko, Serik, Eliby, Carly, Schramm, Peter, Anderson, Satyvaldy, Jatayev, Akhylbek, Kurishbayev & Yuri Shavrukov. (2019). Genetic Modification for Wheat Improvement: From Transgenesis to Genome Editing Biomed Res Int., 6216304.

106. Abe, F., Haque, E., Hisano, H., Tanaka, T., Kamiya, Y., Mikami, M., Kawaura, K., Endo, M., Onishi, K., Hayashi, T. & Sato, K. (2019). Genome-edited triple-recessive mutation alters seed dormancy in wheat. Cell Reports, 28, No. 5, pp. 1362-1369. e4.

107. Wang, W., Simmonds, J., Pan, Q., Davidson, D., He, F., Battal, A., Akhunova, A., Trick, H.N., Uauy, C. & Akhunov, E. (2018). Geneediting and mutagenesis revealinter-cultivar differences and additivity in the contribution of TaGW2 homoeologues togra in size and weightin wheat. Theoretical and Applied Genetics, 131, No. 11, pp. 2463-2475.

108. Liang, Z., Chen, K., Yan, Y., Zhang, Y. & Gao, C. (2018). Genotyping genome-edited mutations in plants using CRISPR ribonucleo protein complexes. Plant Biotechnol. J., 16, No. 12, pp. 2053-2062.