Повний текст та додаткові матеріали
У вільному доступі: PDFЦитована література
1. Lesk, C., Rowhani, P. & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529, No. 7584, pp. 84-87. https://doi.org/10.1038/nature16467
2. IPCC: Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Pt A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R. & White, L.L. (Eds.) (pp. 1-32), New York USA: Cambridge University Press, Cambridge, United Kingdom and New York. 2014. https://doi.org/10.1017/CBO9781107415379
3. Reynolds, M.P., Quilligan, E., Aggarwal, P.K., Kailash, C., Bansal, K.C., Cavalieri, A.J., Chapman, S.C., Chapotin, S.M., Datta, S.K., Duveiller, E., Gill, K.S., Jagadish, K.S.V., Joshi, A.K., Koehler, A.-K., Kosina, P., Krishnan, S., Lafitte, R., Mahala, R.S., Muthurajan, R., Paterson, A.H., Prasanna, B.M., Rakshit, S., Rosegrant, M.W., Sharma, I., Singh, R.P., Sivasankar, S., Vadez, V., Ravi Valluru, R., Prasad, P.V. & Yadav, O.P. (2016). An integrated approach to maintaining cereal productivity under climate change. Glob. Food Security, 8, pp. 9-18. https://doi.org/10.1016/j.gfs.2016.02.002
4. Feller, U. (2019). Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts. J. Plant Physiol., 203, pp. 84-94. https://doi.org/10.1016/j.jplph.2016.04.002
5. Farooq, M., Hussain, M. & Siddique, K.H.M. (2014). Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences, 33, pp. 331-349. https://doi.org/10.1080/07352689.2014.875291
6. Ahanger, M.A., Morad-Talab, N., Abd-Allah, E.F., Ahmad, P. & Hajiboland, R. (2016). Plant growth under drought stress: Significance of mineral nutrients. In: Water Stress and Crop Plants: A Sustainable Approach, Vol. 2, Ahma, P. (Ed.) (pp. 650-668). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119054450.ch37
7. Aroca, R., Porcel, R. & Ruiz-Lozano, J.M. (2011). Regulation of root water uptake under abiotic stress conditions. J. Exp. Bot., 63, No. 1, pp. 43-57. https://doi.org/10.1093/jxb/err266
8. Silva, E.C., Nogueira, R.J.M.C., Silva, M.A. & Albuquerque, M. (2011). Drought stress and plant nutrition. Plant Stress, 5, No. 1. pp. 32-41.
9. Waraich, E.A., Ahmad, R., Ashraf, M.Y. & Sanullah, Eh. (2011). Role of mineral nutrition in alleviation of drought stress in plants. Aust. J. Crop Sci., 5, pp. 764-777.
10. Bityutskiy, N.P. (2011). Trace elements of higher plants. Sankt-Peterburg: Izd-vo SPb. universiteta [in Russian].
11. Khan, M., Ahmad, R., Khan, M. D., Rizwan, M., Ali, S., Khan, M. J., Azam, M., Irum, G., Ahmad, M.N. & Zhu, S. (2018). Trace Elements in Abiotic Stress Tolerance. Plant Nutrients and Abiotic Stress Tolerance, pp. 137-151. https://doi.org/10.1007/978-981-10-9044-8_5
12. Kolupaev, Yu.E. & Kokorev, O.I. (2019). Participation of polyamines in regulation of redox gomeostasis of plants. Visn. Hark. nac. agrar. univ., Ser. Biol., 46, No. 1, pp. 6-22 [in Russian]. https://doi.org/10.35550/vbio2019.01.006
13. Karim, M.R., Zhang, Y.Q., Zhao, R.R., Chen, X.P., Zhang, F.S. & Zou, C.Q. (2012). Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. J. Plant Nutr. Soil Sci., 175, pp. 142-151. https://doi.org/10.1002/jpln.201100141
14. Guralchuk, Zh.Z., Trach, V.V. & Grinyuk, S.A. (2011). Efficiency of the use of microfertilizers and prospects of development of their new kinds. Bull. L'viv. Nat. Agr. Univ., 15, No. 2, pp. 98-103 [in Ukrainian].
15. Da Silva Folli-Pereira, M., Ramos, A.C., Canton, G.C., da Conceicao, J.M., de Souza, S.B., Cogo, A.J.D., Figueira, F.F., Eutropio, F.J. & Rasool, N. (2016). Foliar application of trace elements in alleviating drought stress. In Ahmad, P.(Ed.). Water Stress and Crop Plants: A Sustainable Approach., (pp. 669-681), Vol. 2, John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119054450.ch38
16. Thul, S.T., Sarangi, B.K. & Pandey, R.A. (2013). Nanothecnology in agroecosystem: Implication of plant productivity and its soil environment. Sci. Technol. J., 2, No. 1, pp. 1-7.
17. Pat. 38391 UA, IPC: C07C 51/41, C07F 5/00, C07F 15/00, C07C 53/126, C07C 53/10, A23L 1/00, B82B 3/00. Method of obtaining metal carboxylates "Nanotechnology for the production of metal carboxylates", Kosinov, M.V., Kaplunenko, V.G. Publ. 12.01.2009 [in Ukrainian].
18. Sokolovska-Sergiienko, O.G., Kapitanska, O.S., Priadkina, G.O. & Stasik, O.O. (2017). Antioxidant and photoprotection systems of photosynthetic apparatus in winter wheat plants treated with micronutrients, chelated by succinic acid. Fiziol. rast. genet., 49, No. 5, pp. 434-443 [in Ukrainian]. https://doi.org/10.15407/frg2017.05.434
19. Davydova, O.E. & Kaplunenko, V.G. (2015). Effectiveness of new microelement complexes at winter wheat cultivation. Fiziol. rast. genet., 47, No. 3, pp. 213-223 [in Ukrainian].
20. Kapitanska, O.S., Priadkina, G.O., Stasik, O.O. & Huralchuk, Zh.Z. (2016). Relationship between parameters of photosynthetic apparatus activity and yield of winter wheat under chelated microfertilizers treatment. Fiziol. rast. genet., 48, No. 6, pp. 530-537 [in Ukrainian]. https://doi.org/10.15407/frg2016.06.530
21. Kapitanska, O.S., Priadkina, G.O. & Stasik, O.O. (2018). The effect of foliar application of microelements carboxylates on photosynthetic pigments in winter wheat leaves. J. Belorus. State Univ., 2, pp. 85-94 [in Russian].
22. Morgun, V.V., Sanin, Ye.V., Shwartau, V.V. & Omelianenko, O.A. (2014). 100 centners club. Winter wheat varieties of the Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine and Singenta protection system. Kyiv: Logos [in Ukrainian].
23. Zadoks, J.C., Chang, T.T. & Konzak, F. (1974). A decimal code for the growth stages of cereals. Weed Research., 14, No. 6, pp. 15-21. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
24. Mokronosov, A.T. & Kovalev, A.G. (Eds.) (1989). Photosynthesis and bioproductivity: methods of determination. Moscow: Agropromizdat [in Russian].
25. Gilmore, A.M., Hazlett, T.L., Debrunner, P.G. & Govindjee, G. (1996). Comparative time-resolved photosystem II chlorophyll a fluorescence analyses reveal distinctive difference between photoinhibitory reaction center damage and xanthophylls cycle-depended energy dissipation. Photochem. Photobiol., 64, No. 3, pp. 552-563. https://doi.org/10.1111/j.1751-1097.1996.tb03105.x
26. Korneev, D.Yu. (2002). Information possibilities of chlorophyll fluorescence induction method. Kyiv: Altpress [in Russian].
27. Dospehov, B.A. (1973). The methods of field experiment. Moscow: Agropromizdat [in Russian].
28. Stasik, O.O. (2014). Photorespiration: Metabolism and the physiological role. In Allahverdiyev, S.I., Rubin, A.B. & Shuvalov, V.A. (Eds.). Modern photosynthetic problems (pp. 505-535), Moskva-Izhevsk: Institute of Computer Research [in Russian].
29. Voss, I., Sunil, B., Scheibe, R. & Raghavendra, A.S. (2013). Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biology, 15, No. 4, pp. 713-722. https://doi.org/10.1111/j.1438-8677.2012.00710.x
30. Kiriziy, D.A., Stasik, O.O., Ryzhykova, P.L. & Trotsenko, V.A. (2017). Ontogenetic dynamics of gas exchange of top tier leaves. Fiziol. rast. genet., 49, No. 3, pp. 265-274 [in Ukrainian]. https://doi.org/10.15407/frg2017.03.265
31. Pospisil, P. (2014). The role of metals in production and scavenging of reactive oxygen species in Photosystem II. Plant Cell Physiol., 55, No. 7, pp. 1224-1232. https://doi.org/10.1093/pcp/pcu053
32. Kiriziy, D.A., Stasik, O.O., Priadkina, G.O. & Shadchina, T.M. (2014). Photosynthesis: CO2 assimilation and mechanisms of its regulation. Vol. 2. Kyiv: Logos [in Russian].
33. Stasik, O.O. (2007). The response of photosynthetic apparatus of C3 plants to water deficits. Fiziologiya i biokhimiya cult. rastenii, 39, No. 1, pp. 14-27 [in Ukrainian].
34. Lawlor, D.W. & Tezara, W. (2009). Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of process. Ann. Bot., 103, pp. 561-579. https://doi.org/10.1093/aob/mcn244
35. Liu, H., Gan, W., Rengel, Z. & Zhao, P. (2016). Effect of zinc fertilizer rate and application method on photosynthetic characteristics and grain yield of summer maize. J. Soil Sci. and Plant Nutrition., 16, No. 2. pp. 550-562. https://doi.org/10.4067/S0718-95162016005000045
36. Sun, X., Hu, C., Tan, Q. & Gan, Q. (2006). Effects of molybdenum on photosynthetic characteristics in winter wheat under low temperature stress. Acta Agronomica Sinica, 32, pp. 1418-1422.
37. Karim, Md. R., Zhang, Y. Q., Zhao, R. R., Chen, X. P., Zhang, F. S. & Zou, C. Q. (2012). Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. J. Plant Nutr. Soil Sci., 175, pp. 142-151. https://doi.org/10.1002/jpln.201100141
38. Torabian, Sh., Zahedi, M. & Khoshgoftar, A.H. (2016). Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J. Plant Nutrition, 39, No. 2, pp. 172-180. https://doi.org/10.1080/01904167.2015.1009107
39. Perez, C.E., Rodrigues, F.A., Moreira, W.R. & DaMatta, F.M. (2014). Leaf gas exchange and chlorophyll a fluorescence in wheat plants supplied with silicon and infected with Pyricularia oryzae. Phytopathology, 104, No. 2, pp. 143-149. https://doi.org/10.1094/PHYTO-06-13-0163-R
40. Yavas, I. & Unay, A. (2016). Effects of zinc and salicylic acid on wheat under drought stress. J. Anim. Plant Sci., 26, pp. 1012-1018.
41. Tabatabai, S.M.R., Oveysi, M. & Honarnejad, R. (2015). Evaluation of some characteristics of corn under water stress and zinc foliar application. Gmp Rev., 16, pp. 34-38.
42. Verbruggen, N. & Hermans, Ch. (2013). Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil., 368, pp. 87-99.