Фізіологія рослин і генетика 2023, том 55, № 2, 95-118, doi: https://doi.org/10.15407/frg2023.02.095

Праймування та крос-адаптація рослин до абіотичних стресів: стан проблеми і перспективи

Кірізій Д.А.

  • Iнститут фізіології рослин і генетики Національної академії наук України 03022 Київ, вул. Васильківська, 31/17

В огляді висвітлено сучасний стан і перспективи досліджень проблеми праймування і крос-адаптації рослин до впливу абіотичних стресових чинників — переважно посухи і високої температури. Такі дослідження стають дедалі актуальнішими у зв’язку з глобальними змінами клімату, оскільки розкривають нові підходи до підвищення стійкості сільськогосподарських культур до дії стресорів. Ключовою ланкою у цьому разі є формування під дією помірного стресу так званої стресової пам’яті (праймування), що дає змогу рослині за впливу наступного жорсткішого стресу такої самої або іншої (крос-адаптація) при­роди швидше і ефективніше активувати захисні механізми і тим самим зм’якшити його наслідки порівняно з непраймованими рослинами. У зв’язку з цим розглянуто відомості щодо сигнальних систем, які беруть участь у сприйнятті стресового чинника рослиною і через розгалужені багатокаскадні мережі запускають захисні механізми. Наведено результати експериментів з праймування рослин високими температурами і посухою на початку вегетації до дії цих стресорів у пізніші фази розвитку, а також приклади крос-адаптації, коли праймування посухою підвищувало термотолерантність і навпаки. Коротко розглянуто можливі механізми формування і збереження стресо­вої пам’яті в межах одного покоління та її передавання в наступні покоління (трансгенераційна стресова пам’ять). В цьому разі однією з невирішених проблем залишається коректність екстраполяції результатів, отриманих у лабораторних чи контрольованих умовах, на практику вирощування рослин у полі. Також слід зважати на певні побічні ефекти праймування, оскільки первинна обробка може спричинити деякі негативні наслідки для фізіології та продуктивності рослин, що зумовлює необхідність перевірки, чи будуть праймовані рослини «працювати» так само, як і контрольні, за відсутності стресу.

Ключові слова: праймування, крос-адаптація, висока температура, посуха, сигнальні системи

Фізіологія рослин і генетика
2023, том 55, № 2, 95-118

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Deryng, D., Conway, D., Ramankutty, N., Price, J. & Warren, R. (2014). Global crop yield response to extreme heat stress under multiple climate change futures. Environmental Research Letters, 9, 034011. https://doi.org/10.1088/1748-9326/9/3/034011

2. Raza, A., Razzaq, A., Mehmood, S.S., Zou, X., Zhang, X., Lv, Y. & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants, 8, 34. https://doi.org/10.3390/plants8020034

3. Atlin, G.N., Cairns, J.E. & Das, B. (2017). Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob. Food Secur., 12, pp. 31-37. https://doi.org/10.1016/j.gfs.2017.01.008

4. He, T. & Li, C. (2020). Harness the power of genomic selection and the potential of germplasm in crop breeding for global food security in the era with rapid climate change. Crop J., 8, pp. 688-700. https://doi.org/10.1016/j.cj.2020.04.005

5. Hossain, M.A., Liu, F., Burritt, D.J., Fujita, M., Huang, B. (Eds.). (2020). Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants. Academic Press. https://doi.org/10.1016/C2018-0-02626-2

6. Wang, X., Cai, J., Zhou, Q., Dai, T.B. & Jiang, D. (2021). Physiological Mechanisms of Abiotic Stress Priming Induced the Crops Stress Tolerance: A Review. Scientia Agricultura Sinica, 54 (11), pp. 2287-2301. https://doi.org/10.3864/j.issn.0578-1752.2021.11.004

7. Balmer, A., Pastor, V., Gamir, J., Flors, V. & Mauch-Mani, B. (2015). The 'prime-ome': Towards a holistic approach to priming. Trends in Plant Science, 20, pp. 443-452. https://doi.org/10.1016/j.tplants.2015.04.002

8. Hossain, M.A., Li, Z.G., Hoque, T.S., Burritt, D.J., Fujita, M. & Munne-Bosch, S. (2018). Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma, 255, pp. 399-412. https://doi.org/10.1007/s00709-017-1150-8

9. Liu, H., Able, A.J. & Able, J.A. (2022). Priming crops for the future: rewiring stress memory. Trends in Plant Science, 27, No. 7. https://doi.org/10.1016/j.tplants.2021.11.015

10. Wang, X., Liu, Fu-lai & Jiang, D. (2017). Priming: A promising strategy for crop production in response to future climate. Journal of Integrative Agriculture, 16 (12), pp. 2709-2716. https://doi.org/10.1016/S2095-3119(17)61786-6

11. Fu, P., Jaiswal, D., McGrath, J.M., Wang, S., Long, S.P. & Bernacchi, C.J. (2022). Drought imprints on crops can reduce yield loss: Nature's insights for food security. Food and Energy Security, 11 (1), e332. https://doi.org/10.1002/fes3.332

12. Antoniou, C., Savvides, A., Christou, A. & Fotopoulos, V. (2016). Unravelling chemical priming machinery in plants: The role of reactive oxygen-nitrogen-sulfur species in abiotic stress tolerance enhancement. Current Opinion in Biotechnology, 33, pp. 101-107. https://doi.org/10.1016/j.pbi.2016.06.020

13. Johnson, R. & Puthur, J.T. (2021). Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry, 162, pp. 247-257. https://doi.org/10.1016/j.plaphy.2021.02.034

14. Liu, X., Quan, W. & Bartels, D. (2022). Stress memory responses and seed priming correlate with drought tolerance in plants: an overview. Planta, 255, 45. https://doi.org/10.1007/s00425-022-03828-z

15. Kosakivska, I.V., Vasyuk, V.A. & Voytenko, L.V. (2019). Effect of exogenous abscisic acid on morphological characteristics of winter wheat and spelt under hyperthermia. Fiziol. rast. genet., 51, No. 4, pp. 324-337 [in Ukrainian]. https://doi.org/10.15407/frg2019.04.324

16. Kosakivska, I.V., Vasyuk, V.A. & Voytenko, L.V. (2020). Effect of priming with abscisic acid on the growth and post-stress rehabilitation of the wheat and spelt under conditions of a simulated moderate soil drought. Fiziol. rast. genet., 52, No. 1, pp. 74-83 [in Ukrainian]. https://doi.org/10.15407/frg2020.01.074

17. Liu, H., Able, A.J. & Able, J.A. (2021). Nitrogen starvation-responsive microRNAs are affected by transgenerational stress in durum wheat seedlings. Plants, 10, No. 5, 826. https://doi.org/10.3390/plants10050826

18. Liu, H., Able, A.J. & Able, J.A. (2021). Small RNA, transcriptome and degradome analysis of the transgenerational heat stress response network in durum wheat. Int. J. Mol. Sci., 22, No. 11, 5532. https://doi.org/10.3390/ijms22115532

19. Liu, H., Able, A.J. & Able, J.A. (2021). Small RNAs and their targets are associated with the transgenerational effects of water-deficit stress in durum wheat. Sci. Rep., 11, No. 1, 3613. https://doi.org/10.1038/s41598-021-83074-7

20. Racette, K., Zurweller, B., Tillman, B. & Rowland, D. (2020). Transgenerational stress memory of water deficit in peanut production. Field Crop Res., 248, 107712. https://doi.org/10.1016/j.fcr.2019.107712

21. Urrea Castellanos, R., Friedrich, T., Petrovic, N., Altmann, S., Brzezinka, K., Gorka, M., Graf, A. & B?urle, I. (2020). FORGETTER2 protein phosphatase and phospholipase D modulate heat stress memory in Arabidopsis. Plant J., 104, pp. 7-17. https://doi.org/10.1111/tpj.14927

22. Crisp, P.A., Ganguly, D., Eichten, S.R., Borevitz, J.O. & Pogson, B.J. (2016). Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci. Adv., 2, No. 2, e1501340. https://doi.org/10.1126/sciadv.1501340

23. Liu, J., Feng, L., Gu, X., Deng, X., Qiu, Q., Li, Q., Zhang, Y., Wang, M., Deng, Y., Wang, E., He, Y., B?urle, I., Li, J., Cao, X. & He, Z. (2019). An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Res., 29, No. 5, pp. 379-390. https://doi.org/10.1038/s41422-019-0145-8

24. Lamke, J. & Baurle, I. (2017). Epigenetic and chromatinbased mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol., 18, 124. https://doi.org/10.1186/s13059-017-1263-6

25. Oberkofler, V., Pratx, L. & B?urle, I. (2021). Epigenetic regulation of abiotic stress memory: maintaining the good things while they last. Curr. Opin. Plant Biol.. 61, 102007. https://doi.org/10.1016/j.pbi.2021.102007

26. Louis N., Dhankher, O.P. & Puthur, J.T. (2023). Seed priming can enhance and retain stress tolerance in ensuing generations by inducing epigenetic changes and trans-generational memory. Phisiol. Plant., 175, (2), e13881. https://doi.org/10.1111/ppl.13881

27. Bhadouriya, S.L., Mehrotra, S., Basantani, M.K., Loake, G.J. & Mehrotra, R. (2021). Role of chromatin architecture in plant stress responses: An update. Front. Plant Sci., 11, 603380. https://doi.org/10.3389/fpls.2020.603380

28. Iwasaki, M. & Paszkowski, J. (2014). Epigenetic memory in plants. EMBO J., 33, pp. 1987-1998. https://doi.org/10.15252/embj.201488883

29. de Freitas Guedes, F.A., Nobres, P., Ferreira, D.C.R., Menezes-Silva, P.E., Ribeiro-Alves, M., Correa, R.L., DaMatta, F.M. & Alves-Ferreira, M. (2018). Transcriptional memory contributes to drought tolerance in coffee (Coffea canephora) plants. Environ. Exp. Bot., 147, pp. 220-233. https://doi.org/10.1016/j.envexpbot.2017.12.004

30. Li, P., Yang, H., Wang, L., Liu, H., Huo, H., Zhang, C., Liu, A., Zhu, A., Hu, J., Lin, Y. & Liu, L. (2019). Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Front. Genet., 10, 55. https://doi.org/10.3389/fgene.2019.00055

31. Devireddy A.R., Zandalinas, S.I., Fichman, Y. & Mittler, R. (2021). Integration of reactive oxygen species and hormone signaling during abiotic stress The Plant Journal, 105 (2), pp. 459-476. https://doi.org/10.1111/tpj.15010

32. Abhinandan, K., Skori, L., Stanic, M., Hickerson, N.M.N., Jamshed, M. & Samuel, M.A. (2018). Abiotic stress signaling in wheat - an inclusive overview of hormonal interactions during abiotic stress responses in wheat. Front. Plant Sci., 9, 734. https://doi.org/10.3389/fpls.2018.00734

33. Mohammad, I., Dar, M.I., Raghib, F., Ahmad, B., Raina, A., Khan, F.A. & Naushin, F. (2019). Role and regulation of plants phenolics in abiotic stress tolerance: an overview. In: Khan, M..R., Reddy, P.S., Ferrante, A., Khan, N.A. (Eds.). Plant Signaling Molecules (pp. 157-168). Elsevier. https://doi.org/10.1016/B978-0-12-816451-8.00009-5

34. Tiwari, Y.K. & Yadav, S.K. (2019). High temperature stress tolerance in maize (Zea mays L.): physiological and molecular mechanisms. Journal of Plant Biol., 62, pp. 93-102. https://doi.org/10.1007/s12374-018-0350-x

35. Zandalinas, S.I., Fichman, Y., Devireddy, A.R., Sengupta, S., Azad, R.K. & Mittler, R. (2020). Systemic signaling during abiotic stress combination in plants. Proc. Natl. Acad. Sci. USA, 117, pp. 13810-13820. https://doi.org/10.1073/pnas.2005077117

36. Zandalinas, S.I., Fritschi, F.B. & Mittler, R. (2020). Signal transduction networks during stress combination. J. Exp. Bot., 71, pp. 1734-1741. https://doi.org/10.1093/jxb/erz486

37. Radchenko, M., Sychuk, A. & Morderer, Ye. (2014). Decrease of the herbicide fenoxaprop phytotoxicity in the drought condition: the role of antioxidant enzymatic system. Journal of Plant Protection Research, 54, No. 4, pp. 390-394. https://doi.org/10.2478/jppr-2014-0058

38. Kolupaev, Yu.E. & Oboznyi, A.I. (2013). Reactive oxygen species and antioxidative system at cross adaptation of plants to activity of abiotic stressors. Visn. Hark. nac. agrar. univ., Ser. Biol., Iss. 3, pp. 18-31 [in Ukrainian].

39. Li, H., Li, M., Wei, X., Zhang, X., Xue, R., Zhao, Y. & Zhao, H. (2017). Transcriptome analysis of drought-responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves. Mol. Genet. Genom., 292 (5), pp. 1091-1110. https://doi.org/10.1007/s00438-017-1330-4

40. Li, Z.G., Min, X. & Zhou, Z.H. (2016). Hydrogen sulfide: A signal molecule in plant cross-adaptation. Front. Plant Sci., 7, 1621. https://doi.org/10.3389/fpls.2016.01621

41. Kolupaev, Yu.E. & Havva, K.M. (2022). Molecular mechanisms of hydrogen sulfide's participation in adaptive reactions of plants. Fiziol. rast. genet., 54, No. 1, pp. 3-25 [in Ukrainian]. https://doi.org/10.15407/frg2022.01.003

42. Kollist, H., Zandalinas, S.I., Sengupta, S., Nuhkat, M., Kangasjarvi, J. & Mittler, R. (2019). Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends Plant Sci., 24, pp. 25-37. https://doi.org/10.1016/j.tplants.2018.10.003

43. Choudhury, F.K., Rivero, R.M., Blumwald, E. & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. Plant J., 90, pp. 856-867. https://doi.org/10.1111/tpj.13299

44. Fichman, Y. & Mittler, R. (2020). Rapid systemic signaling during abiotic and biotic stresses: is the ROS wave master of all trades? Plant J., 102, pp. 887-896. https://doi.org/10.1111/tpj.14685

45. Devireddy, A.R., Zandalinas, S.I., Gomez-Cadenas, A., Blumwald, E. & Mittler, R. (2018). Coordinating the overall stomatal response of plants: rapid leaf-to-leaf communication during light stress. Sci. Signal., 11 (518), eaam9514. https://doi.org/10.1126/scisignal.aam9514

46. Devireddy, A.R., Arbogast, J. & Mittler, R. (2020). Coordinated and rapid whole-plant systemic stomatal responses. New Phytol., 225, pp. 21-25. https://doi.org/10.1111/nph.16143

47. Lukic, N., Kukavica, B., Davidovic-Plavsic, B., Hasanagic, D. & Walter, J. (2020). Plant stress memory is linked to high levels of anti-oxidative enzymes over several weeks. Environ. Exp. Bot.. 178, 104166. https://doi.org/10.1016/j.envexpbot.2020.104166

48. De Costa, W. (2011). A review of the possible impacts of climate change on forests in the humid tropics. J. Natl. Sci. Found. Sri Lanka, 39, pp. 281-302. https://doi.org/10.4038/jnsfsr.v39i4.3879

49. Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D.B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J.L., Elliott, J., Ewert, F., Janssens, I.A., Li, T., Lin, E., Liu, Q., Martre, P., Muller, C., Peng, S., Penuelas, J., Ruane, A.C., Wallach, D., Wang, T., Wu, D., Liu, Z., Zhu, Y., Zhu, Z. & Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA, 114, pp. 9326-9331. https://doi.org/10.1073/pnas.1701762114

50. Nadeem, M., Li, J., Wang, M., Shah, L., Lu, S., Wang, X. & Ma, C. (2018). Unraveling field crops sensitivity to heat stress: mechanisms, approaches, and future prospects. Agronomy, 8, 128. https://doi.org/10.3390/agronomy8070128

51. Liu, H., Able, A.J. & Able, J.A. (2019). Genotypic performance of Australian durum wheat under single and combined water-deficit and heat stress during reproduction. Sci. Rep., 9, No. 1, 14986. https://doi.org/10.1038/s41598-019-49871-x

52. Begcy, K., Nosenko, T., Zhou, L.-Z., Fragner, L., Weckwerth, W. & Dresselhaus T. (2019). Male sterility in maize after transient heat stress during the tetrad stage of pollen development. Plant Physiol., 181, pp. 683-700. https://doi.org/10.1104/pp.19.00707

53. Jedmowski, C., Ashoub, A., Momtaz, O. & Bruggemann, W. (2015). Impact of drought, heat, and their combination on chlorophyll fluorescence and yield of wild barley (Hordeum spontaneum). J. Bot., 2015 (6), pp. 1-9. https://doi.org/10.1155/2015/120868

54. Hasanuzzaman, M., Nahar, K., Alam, M.M., Roychowdhury, R. & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14, pp. 9643-9684. https://doi.org/10.3390/ijms14059643

55. Ahrens, C.W., Challis, A., Byrne, M., Leigh, A., Nicotra, A.B., Tissue, D. & Rymer, P. (2021). Repeated extreme heatwaves result in higher leaf thermal tolerances and greater safety margins. New Phytol., 232 (3), pp. 1212-1225. https://doi.org/10.1111/nph.17640

56. Wang, X., Cai, J., Liu, F., Dai, T., Cao, W., Wollenweber, B. & Jiang, D. (2013). Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physiology and Biochemistry, 74, pp. 185-192. https://doi.org/10.1016/j.plaphy.2013.11.014

57. Zhang, X., Zhou, Q., Wang, X., Cai, J., Dai, T., Cao, W. & Jiang, D. (2016). Physiological and transcriptional analyses of induced postanthesis thermo-tolerance by heat-shock pretreatment on germinating seeds of winter wheat. Environmental and Experimental Botany, 131, pp. 181-189. https://doi.org/10.1016/j.envexpbot.2016.08.002

58. Wang, X., Cai, J., Jiang, D., Liu, F., Dai, T. & Cao, W. (2011). Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. Journal of Plant Physiology, 168, pp. 585-593. https://doi.org/10.1016/j.jplph.2010.09.016

59. Wang, X., Cai, J., Liu, F., Jin, M., Yu, H., Jiang, D., Wollenweber, B., Dai, T. & Cao, W. (2012). Pre-anthesis high temperature acclimation alleviates the negative effects of post-anthesis heat stress on stem stored carbohydrates remobilization and grain starch accumulation in wheat. Journal of Cereal Science, 55, pp. 331-336. https://doi.org/10.1016/j.jcs.2012.01.004

60. Xue, G.P., Sadat, S., Drenth, J. & McIntyre, C.L. (2014). The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. Journal of Experimental Botany, 65, pp. 539-557. https://doi.org/10.1093/jxb/ert399

61. Xin, C., Wang, X., Cai, J., Zhou, Q., Liu, F., Dai, T., Cao, W. & Jiang, D. (2016). Changes of transcriptome and proteome are associated with the enhanced post-anthesis high temperature tolerance induced by pre-anthesis heat priming in wheat. Plant Growth Regulation, 79, pp. 135-145. https://doi.org/10.1007/s10725-015-0119-x

62. Lamke, J., Brzezinka, K., Altmann, S. & Baurle, I. (2016). A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO Journal, 35, pp. 162-175. https://doi.org/10.15252/embj.201592593

63. Oberkofler, V. & Baurle, I. (2022). Inducible epigenome editing probes for the role of histone H3K4 methylation in Arabidopsis heat stress memory. Plant Physiology, 189 (2), pp. 703-714. https://doi.org/10.1093/plphys/kiac113

64. Brzezinka, K., Altmann, S., Czesnick, H., Nicolas, P., Gorka, M., Benke, E., Kabelitz, T., Jahne, F., Graf, A., Kappel, C. & Baurle, I. (2016). Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. eLife, 5, e17061. https://doi.org/10.7554/eLife.17061

65. Song, Z.T., Zhang, L.L., Han, J.J., Zhou, M. & Liu, J.X. (2021). Histone H3K4 methyltransferases SDG25 and ATX1 maintain heat-stress gene expression during recovery in Arabidopsis. Plant J., 105, pp. 1326-1338. https://doi.org/10.1111/tpj.15114

66. Sun, M., Jiang, F.L., Zhou, R., Wen, J.Q., Cui, S.Y., Wang, W.Z. & Wu, Z. (2019). Respiratory burst oxidase homologue-dependent H2O2 is essential during heat stress memory in heat sensitive tomato. Sci. Hortic., 258, 108777. https://doi.org/10.1016/j.scienta.2019.108777

67. Sun, M., Jiang, F., Cen, B., Wen, J., Zhou, Y. & Wu, Z. (2018). Respiratory burst oxidase homologue-dependent H2O2 and chloroplast H2O2 are essential for the maintenance of acquired thermotolerance during recovery after acclimation. Plant Cell Environ., 41, pp. 2373-2389. https://doi.org/10.1111/pce.13351

68. Sallam, A., Alqudah, A.M., Dawood, M.F.A., Baenziger, P.S. & Borner, A. (2019). Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. Int. J. Mol. Sci., 20, 3137. https://doi.org/10.3390/ijms20133137

69. Morgun, V.V., Stasik, O.O., Kiriziy, D.A. & Sokolovska-Sergiienko, O.G. (2019). Effect of drought on photosynthetic apparatus, activity of antioxidant enzymes, and productivity of modern winter wheat varieties. Regulatory Mechanisms in Biosystems, 10, No. 1, pp. 16-25. https://doi.org/10.15421/021903

70. Kiriziy, D.A. & Stasik, O.O. (2022). Effects of drought and high temperature on physiological and biochemical processes, and productivity of plants. Fiziol. rast. genet., 54, No. 2, pp. 95-122 [in Ukrainian]. https://doi.org/10.15407/frg2022.02.095

71. Zhang, X., Wang, X., Zhuang, L., Gao, Y. & Huang, B. (2019). Abscisic acid mediation of drought priming-enhanced heat tolerance in tall fescue (Festuca arundinacea) and Arabidopsis. Physiol. Plant., 167, pp. 488-501. https://doi.org/10.1111/ppl.12975

72. Wang, X, Mao, Z., Zhang, J., Hemat, M., Huang, M., Cai, J., Zhou, Q., Dai, T. & Jiang, D. (2019). Osmolyte accumulation plays important roles in the drought priming induced tolerance to post-anthesis drought stress in winter wheat (Triticum aestivum L.). Environ. Exp. Bot., 166, 103804. https://doi.org/10.1016/j.envexpbot.2019.103804

73. Rodriguez-Calcerrada, J., Li, M., Lopez, R., Cano, F.J., Oleksyn, J., Atkin, O.K., Pita, P., Aranda, I. & Gil, L. (2017). Drought-induced shoot dieback starts with massive root xylem embolism and variable depletion of nonstructural carbohydrates in seedlings of two tree species. New Phytologist, 213, pp. 597-610. https://doi.org/10.1111/nph.14150

74. Rogers, E.D. & Benfey, P.N. (2015). Regulation of plant root system architecture: Implications for crop advancement. Current Opinion in Biotechnology, 32, pp. 93-98. https://doi.org/10.1016/j.copbio.2014.11.015

75. Selote D S, Khanna-Chopra R. 2010. Antioxidant response of wheat roots to drought acclimation. Protoplasma, 245, 153-163. https://doi.org/10.1007/s00709-010-0169-x

76. Tankari, M., Wang, C., Ma, H., Li, X., Li, L., Soothar, R.K., Cui, Zaman-Allah, M., Hao, W., Liu, F. & Wang, Y. (2021). Drought priming improved water status, photosynthesis and water productivity of cowpea during post-anthesis drought stress. Agric. Water Manag., 245, 106565. https://doi.org/10.1016/j.agwat.2020.106565

77. Wang, X., Vignjevic, M., Jiang, D., Jacobsen, S. & Wollenweber, B. (2014). Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett. Journal of Experimental Botany, 65, pp. 6441-6456. https://doi.org/10.1093/jxb/eru362

78. Ullah, H., Santiago-Arenas, R., Ferdous, Z., Attia, A. & Datta, A. (2019). Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: a review. Adv. Agron.. 156, pp. 109-157. https://doi.org/10.1016/bs.agron.2019.02.002

79. Mega, R., Abe, F., Kim, J.S., Tsuboi, Y., Tanaka, K., Kobayashi, H., Sakata, Y., Hanada, K., Tsujimoto, H., Kikuchi, J., Cutler, S.R. & Okamoto, M. (2019). Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors. Nat. Plants, 5, pp. 153-159. https://doi.org/10.1038/s41477-019-0361-8

80. Ding, Y., Fromm, M. & Avramova, Z. (2012). Multiple exposures to drought 'train' transcriptional responses in Arabidopsis. Nature Communications, 3, 740. https://doi.org/10.1038/ncomms1732

81. Zhang, X., Xu, Y. & Huang, B. (2019). Lipidomic reprogramming associated with drought stress priming-enhanced heat tolerance in tall fescue (Festuca arundinacea). Plant Cell Environ., 42, pp. 947-958. https://doi.org/10.1111/pce.13405

82. Forestan, C., Farinati, S., Zambelli, F., Pavesi, G., Rossi, V. & Varotto, S. (2020). Epigenetic signatures of stress adaptation and flowering regulation in response to extended drought and recovery in Zea mays. Plant Cell Environ., 43, pp. 55-75. https://doi.org/10.1111/pce.13660

83. de Freitas Guedes, F.A., Menezes-Silva, P.E., DaMatta, F.M. & Alves-Ferreira, M. (2019). Using transcriptomics to assess plant stress memory. Theor. Exp. Plant Physiol., 31, pp. 47-58. https://doi.org/10.1007/s40626-018-0135-0

84. Avramova, Z. (2015). Transcriptional 'memory' of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. Plant J., 83, pp. 149-159. https://doi.org/10.1111/tpj.12832

85. Avramova, Z. (2019). Defence-related priming and responses to recurring drought: two manifestations of plant transcriptional memory mediated by the ABA and JA signalling pathways. Plant Cell Environ., 42, pp. 983-997. https://doi.org/10.1111/pce.13458

86. Wang, X., Vignjevic, M., Liu, F., Jacobsen, S., Dong, G., Jiang, M. & Wollenweber, B. (2015). Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat. Plant Growth Regulation, 75, No. 3, pp. 677-687. https://doi.org/10.1007/s10725-014-9969-x

87. Liu, S., Li, X., Larsen, D.H., Zhu, X., Song, F. & Liu, F. (2017). Drought priming at vegetative growth stage enhances nitrogen-use efficiency under post-anthesis drought and heat stress in wheat. J. Agron. Crop Sci., 203 (1), pp. 29-40. https://doi.org/10.1111/jac.12190

88. Zhang, X., Wang, X., Zhong, J., Zhou, Q., Wang, X., Cai, J., Dai, T., Cao, W. & Jiang, D. (2016). Drought priming induces thermotolerance to post-anthesis high-temperature in offspring of winter wheat. Environmental and Experimental Botany, 127, pp. 26-36. https://doi.org/10.1016/j.envexpbot.2016.03.004

89. Stirbet, A., Lazar, D., Kromdijk, J. & Govindjee. (2018). Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica, 56 (1), pp. 86-104. https://doi.org/10.1007/s11099-018-0770-3

90. Xu, Y., Wang, J., Bonos, S., Meyer, W. & Huang, B. (2018). Candidate genes and molecular markers correlated to physiological traits for heat tolerance in fine fescue cultivars. Int. J. Mol. Sci., 19 (1), 116. https://doi.org/10.3390/ijms19010116

91. Haque, M.S., Kjaer, K.H., Rosenqvist, E., Sharma, D.K. & Ottosen, C.O. (2014). Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures. Environ. Exp. Bot., 99, pp. 1-8. https://doi.org/10.1016/j.envexpbot.2013.10.017

92. Zhang, X., Cai, J., Wollenweber, B., Liu, F., Dai, T., Cao, W. & Jiang, D. (2013). Multiple heat and drought events affect grain yield and accumulations of high molecular weight glutenin subunits and glutenin macropolymers in wheat. Journal of Cereal Science, 57, pp. 134-140. https://doi.org/10.1016/j.jcs.2012.10.010

93. Li, X., Topbjerg, H.B., Jiang, D. & Liu, F. (2015). Drought priming at vegetative stage improves the antioxidant capacity and photosynthesis performance of wheat exposed to a short term low temperature stress at jointing stage. Plant and Soil, 393, pp. 307-318. https://doi.org/10.1007/s11104-015-2499-0

94. Li, X., Cai, J., Liu, F., Dai, T., Cao, W. & Jiang, D. (2014). Physiological, proteomic and transcriptional responses of wheat to combination of drought or waterlogging with late spring low temperature. Functional Plant Biology, 41, pp. 690-703. https://doi.org/10.1071/FP13306

95. Wang, X., Zhang, J., Song, J., Huang, M., Cai, J., Zhou, Q., Dai, T. & Jiang, D. (2020). Abscisic acid and hydrogen peroxide are involved in drought priming-induced drought tolerance in wheat (Triticum aestivum L.). Plant Biol., 22, pp. 1113-1122. https://doi.org/10.1111/plb.13143

96. Zheng, Y. Xia, Z., Wu, J. & Ma, H. (2021). Effects of repeated drought stress on the physiological characteristics and lipid metabolism of Bombax ceiba L. during subsequent drought and heat stresses. BMC Plant Biol., 21, 467. https://doi.org/10.1186/s12870-021-03247-4

97. Ben Abdallah, M., Methenni, K., Taamalli,W., Hessini, K. & Ben Youssef, N. (2022). Cross-Priming Approach Induced Beneficial Metabolic Adjustments and Repair Processes during Subsequent Drought in Olive. Water, 14, 4050. https://doi.org/10.3390/w14244050

98. Katam, R., Shokri, S., Murthy, N., Singh, S.K., Suravajhala, P., Khan, M.N., Bahmani, M., Sakata, K. & Reddy, K.R. (2020). Proteomics, physiological, and biochemical analysis of cross tolerance mechanisms in response to heat and water stresses in soybean. PLoS ONE, 15 (6), e0233905. https://doi.org/10.1371/journal.pone.0233905

99. Morgun, V.V., Dubrovna, O.V. & Morgun, B.V. (2016). The modern biotechnologies of producing wheat plants resistant to stresses. Fiziol. rast. genet., 48, No. 3, pp. 196-213 [in Ukrainian]. https://doi.org/10.15407/frg2016.03.196

100. Yadav, R., Juneja, S., Kumar, R., Saini, R. & Kumar, S. (2022). Understanding cross-tolerance mechanism and effect of drought priming on individual heat stress and combinatorial heat and drought stress in chickpea. Journal of Crop Science and Biotechnology, 25 (5). https://doi.org/10.1007/s12892-022-00148-2

101. Kedruk, A.C., Kiriziy, D.A., Sokolovska-Sergienko, O.G. & Stasik, O.O. (2021). Response of the photosynthetic apparatus of winter wheat varieties to the combined action of drought and high temperature. Fiziol. rast. genet., 53, No. 5, pp. 387-405 [in Ukrainian]. https://doi.org/10.15407/frg2021.05.387

102. Dhanya Thomas, T.T., Dinakar, C. & Puthur, J.T. (2020). Effect of UV-B priming on the abiotic stress tolerance of stress-sensitive rice seedlings: priming imprints and cross-tolerance. Plant Physiol. Biochem., 147, pp. 21-30. https://doi.org/10.1016/j.plaphy.2019.12.002

103. Liu, W., Huang, L., Liang, X., Liu, L., Sun, C. & Lin, X. (2021). Heat shock induces cross adaptation to aluminum stress through enhancing ascorbate-glutathione cycle in wheat seedlings. Chemosphere, 278, 130397. https://doi.org/10.1016/j.chemosphere.2021.130397

104. Yadav, R., Juneja, S. & Kumar, S. (2021). Cross priming with drought improves heat-tolerance in chickpea (Cicer arietinum L.) by stimulating small heat shock proteins and antioxidative defense. Environ. Sustain., 4, pp. 171-182. https://doi.org/10.1007/s42398-020-00156-4

105. Liu, H., Able, A.J. & Able, J.A. (2016). SMARTER de-stressed cereal breeding. Trends Plant Sci., 21, pp. 909-925. https://doi.org/10.1016/j.tplants.2016.07.006

106. Jaskiewicz, M., Conrath, U. & Peterh?nsel, C. (2011). Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep., 12, pp. 50-55. https://doi.org/10.1038/embor.2010.186

107. Thakur, A., Sharma, K.D., Siddique, K.H.M. & Nayyar, H. (2020). Cold priming the chickpea seeds imparts reproductive cold tolerance by reprogramming the turnover of carbohydrates, osmo-protectants and redox components in leaves. Sci. Hortic., 261, 108929. https://doi.org/10.1016/j.scienta.2019.108929

108. Wang, W., Wang, X., Zhang, J., Huang, M., Cai, J., Zhou, Q., Dai, T. & Jiang, D. (2020). Salicylic acid and cold priming induce late-spring freezing tolerance by maintaining cellular redox homeostasis and protecting photosynthetic apparatus in wheat. Plant Growth Regul., 90, pp. 109-121. https://doi.org/10.1007/s10725-019-00553-8

109. Fan, Y., Ma, C., Huang, Z., Abid, M., Jiang, S., Dai, T., Zhang, W., Ma, S., Jiang, D. & Han, X. (2018). Heat priming during early reproductive stages enhances thermo-tolerance to post-anthesis heat stress via improving photosynthesis and plant productivity in winter wheat (Triticum aestivum L.). Front. Plant Sci., 9, 805. https://doi.org/10.3389/fpls.2018.00805

110. Anastasiadi, D., Venney, C.J., Bernatchez, L. & Wellenreuther, M. (2021). Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol. Evol., 36, pp. 1124-1140. https://doi.org/10.1016/j.tree.2021.08.006

111. Miryeganeh, M. & Saze, H. (2020). Epigenetic inheritance and plant evolution. Popul. Ecol., 62, pp. 17-27. https://doi.org/10.1002/1438-390X.12018

112. Friedrich, T., Faivre, L., Baurle, I. & Schubert, D. (2019). Chromatin-based mechanisms of temperature memory in plants. Plant Cell Environ.. 42, pp. 762-770. https://doi.org/10.1111/pce.13373

113. Liu, J. & He, Z. (2020). Small DNA methylation, big player in plant abiotic stress responses and memory. Front. Plant Sci., 11, 595603. https://doi.org/10.3389/fpls.2020.595603

114. Yakovlev, I.A. & Fossdal, C.G. (2017). In silico analysis of small RNAs suggest roles for novel and conserved miRNAs in the formation of epigenetic memory in somatic embryos of Norway spruce. Front. Physiol., 8, 674. https://doi.org/10.3389/fphys.2017.00674

115. Wijewardana, C., Reddy, K.R., Krutz, L.J., Gao, W. & Bellaloui, N. (2019). Drought stress has transgenerational effects on soybean seed germination and seedling vigor. PLoS ONE, 14, e0214977. https://doi.org/10.1371/journal.pone.0214977

116. Racette, K., Rowland, D., Tillman, B., Erickson, J., Munoz, P. & Vermerris, W. (2019). Transgenerational stress memory in seed and seedling vigor of peanut (Arachis hypogaea L.) varies by genotype. Environ. Exp. Bot., 162, pp. 541-549. https://doi.org/10.1016/j.envexpbot.2019.03.006

117. do Amaral, M.N., Auler, P.A., Rossatto, T., Barros, P.M., Oliveira, M.M. & Braga, E.J.B. (2020). Long-term somatic memory of salinity unveiled from physiological, biochemical and epigenetic responses in two contrasting rice genotypes. Physiol. Plant., 170, pp. 248-268. https://doi.org/10.1111/ppl.13149

118. Nosalewicz, A., Siecinska, J., Smiech, M., Nosalewicz, M., Wiacek, D., Pecio, A. & Wach, D. (2016). Transgenerational effects of temporal drought stress on spring barley morphology and functioning. Environmental and Experimental Botany, 131, pp. 120-127. https://doi.org/10.1016/j.envexpbot.2016.07.006

119. Wang, X., Xin, C., Cai, J., Zhou, Q., Dai, T., Cao, W. & Jiang, D. (2016). Heat priming induces trans-generational tolerance to high temperature stress in wheat. Frontiers in Plant Science, 7, 501. https://doi.org/10.3389/fpls.2016.00501

120. Tricker, P.J. (2015). Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin. Front. Plant Sci., 6, 699. https://doi.org/10.3389/fpls.2015.00699