Фізіологія рослин і генетика 2023, том 55, № 4, 279-300, doi: https://doi.org/10.15407/frg2023.04.279

Вплив органо-мінеральних добрив на фізіологічні процеси та продуктивність помідора їстівного (Lycopersicon esculentum Mill.)

Дзендзель А.Ю., Пида С.В.

  • Тернопільський національний педагогічний університет імені В. Гнатюка 46027 Тернопіль, вул. М. Кривоноса, 2

Проаналізовано літературні дані та наведено результати власних досліджень щодо ефективності застосування органо-мінеральних добрив (ОМД) за показниками фізіологічних процесів, продуктивності та якості плодів помідора їстівного (Lycopersicon esculentum Mill.). Показано, що чинником, який регулює фізіологічні процеси, формування урожаю культури та якість її плодів, можуть бути ОМД. За ДСТУ ISO 4884:2007, ОМД отримують фізичною та/чи хімічною взаємодією органічних і мінеральних складників. Зазначено, що використання ОМД і гумінових препаратів у технологіях вирощування культур є складовою частиною органічного землеробства, яке інтенсивно розвивається в Україні і його поширення є одним зі шляхів біофортифікації продукції рослинництва корисними мікронутрієнтами. Виявлено нижчу продуктивність L. esculentum, але кращу якість плодів за органічного вирощування. Добрива на основі гумінових речовин поліпшують посівні якості насіння помідора, його мінеральне живлення, впливають на мітотичний поділ клітин, проникність мембран, активність ензимів, обмін речовин, стимулюють укорінення та ростові процеси розсади, вегетативних і генеративних органів, фотосинтез, водообмін, закладання більшого числа репродуктивних органів і продуктивність, сприяють накопиченню у плодах сухих речовин, вуглеводів, каротиноїдів, вітамінів, флавоноїдів, макро- і мікроелементів, зниженню їх кислотності, підвищують стійкість розсади і рослин до несприятливих біотичних та абіотичних чинників. Наведені морфологічні й фізіолого-біохімічні зміни у рослинах за використання ОМД приводять до статистично достовірного підвищення показників продуктивності культури на 15-50 % та якості плодів.

Ключові слова: Lycopersicon esculentum Mill., органо-мінеральні добрива, органічне землеробство, фізіологічні процеси, продуктивність, якість плодів

Фізіологія рослин і генетика
2023, том 55, № 4, 279-300

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Kontseptsii Derzhavnoi tsilovoi prohramy rozvytku ovochivnytstva na period do 2025 roku: Rozporiadzhennia Kabinetu Ministriv Ukrainy vid 21.10.2020 r. N1333-r. / M-vo ahrar. polityky ta prodovolstva Ukrainy. Retrived from https://zakon.rada.gov.ua/ laws/show/1333-2020-r# [in Ukrainian].

2. Ukraina - 20-ta v sviti za orhanichnymy uhiddiamy. AgroPortal. Retrived from https://agroportal.ua/news/ukraina/ukraina-20ya-v-mire-po-organicheskim-ugodiyam [in Ukrainian].

3. Willer, H. & Lernoud, J. (2017). The world of organic agriculture. Statistics and emerging trends 2017. Research Institute of Organic Agriculture (FiBL), Frick, and IFOAM - Organics International, Bonn. Version 1.3 of February 20, 2017. Retrived from http://www.organic-world.net/yearbook/yearbook-2017.html

4. The world of organic agriculture is launched (2018). Retrieved from http://www.ifoam.org/2018

5. Zeman, K. & Hron, J. (2018). The agricultural sector has the most efficient management of state receivables in the Czech Republic. Agricultural Economics. Czech. 64, pp. 61-73. https://doi.org/10.17221/257/2016-AGRICECON

6. Marmul, L.O. & Novak, N.P. (2016). Rozvytok orhanichnoho vyrobnytstva v Ukraini na zasadakh kooperatsii. Ekonomika APK, 9, pp. 26-32 [in Ukrainian].

7. Iaroshenko, R.Yu. & Mirzoieva, T.V. (2019). Regarding the problems and prospects for the development of organic production of plant products. Organic production and food safety (pp. 124-126). Zhytomyr: ZhNAEU [in Ukrainian].

8. Fedorov, A.O., Shkabara, T.L. & Fedorova, V.O. (2013). Consumer characteristics of microcomponents of food products. Tekhnol. kharchuvannia i tovaroznavstvo, No. 2, pp. 367-374 [in Ukrainian].

9. Agarwal, A., Sharma, U., Ranjan, R. & Nasim, M. (2017). Combining ability analysis for yield, quality, earliness, and yield-attributing traits in tomato. Int. J. Veg. Sci., 6, No. 23, pp. 605-615. https://doi.org/10.1080/19315260.2017.1355864

10. Sharma, V., Kaushik, M., Agnihotri, C., Agnihotri, S. & Singh, B.P. (2023). Chapter 9 - Postharvest disease management of tomato (Solanum lycopersicum L.) using endophytic actinobacteria as natural biocontrol agent. Microbial Endophytes and Plant Growth Beneficial Interactions and Applications. pp. 137-150. https://doi.org/10.1016/B978-0-323-90620-3.00005-2

11. Rai, S. & Prasad, R. (2023). Chapter 4 - Trichoderma against fusarium wilt of tomato: current insights and challenges. New and future developments in microbial biotechnology and bioengineering trichoderma for biotechnological applications: current insight and future prospects. pp. 107-124. https://doi.org/10.1016/B978-0-323-99890-1.00002-9

12. Anum, F., Jabeen, K., Javad, S., Iqbal, S., Shah, A.A., Ryan, C. & Elansary, H.O. (2023). Management of botrytis grey mold of tomato using bio-fabricated silver nanoparticles. South Afr. J. Bot., August, 159, pp. 642-652. https://doi.org/10.1016/j.sajb.2023.06.019

13. Stasyk, O.O., Kirizii, D.A. & Priadkina, H.O. (2021). Photosynthesis and productivity: main scientific achievements and innovative developments. Fiziol. rast. genet., 53, No. 2, pp. 160-184 [in Ukrainian]. https://doi.org/10.15407/frg2021.02.160

14. Kuriata, V.H. & Kravets, O.O. (2018). Regulation of morfogenesis, assimilates partitioning, nitrogen-containing compounds and productivity of tomatoes under gibberellin and retardant folicur treatment. Fiziol. rast. genet., 50, No. 2, pp. 95-104 [in Ukrainian]. http://nbuv.gov.ua/UJRN/FBKR_2018_50_2_3 https://doi.org/10.15407/frg2018.02.095

15. Kirizii, D.A., Stasyk, O.O., Priadkina, H.A. & Shadchyna, T.M. (2014). Photosynthesis.    Assimilation of CO2 and mechanisms of its regulation. Vol. 2. Kyiv: Logos [in Russian].

16. Yu, S.M., Lo, S.F. & Ho, T.D. (2015). Source-sink communication: Regulated by hormone, nutrient and stress cross-signaling. Trends Plant Sci., 12, No. 20, pp. 844-857. https://doi.org/10.1016/j.tplants.2015.10.009

17. Bonelli, L.E., Monzon, J.P., Cerrudo, A., Rizzalli, R.H. & Andrade, F.H. (2016). Maize grain yield components and source-sink relationship as affected by the delay in sowing date. Field Crops Res., 198, pp. 215-225. https://doi.org/10.1016/j.fcr.2016.09.003

18. DSTU ISO 4884:2007. Organic and organo-mineral fertilizers. Terms and definitions. Kyiv: Derzhspozhyvstandart Ukrainy, 2010 [in Ukrainian].

19. Hadzalo, Ya.M. & Kaminskyi, V.F. (Eds.). (2016). Scientific basis of production of organic products in Ukraine. Kyiv: Ahrarna nauka [in Ukrainian].

20. Pshychenko, O.I. (2019). Formation of productivity of spring barley under conditions of organic farming. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva im. P. Vasylenka. Ser. Mekhanizatsiia silskohospodarskoho vyrobnytstva, prysviach. Vseukr. nauk.-prakt. konf. «Optymizatsiia tekhnichnykh ta tekhnolohichnykh system ahrovyrobnytstva». 199, pp. 314-319. Retrived from http://repo.snau.edu.ua: 8080/xmlui/handle/123456789/7405

21. Vovkotrub, M.P., Muliarchuk, I.F. & Horodnii, M.M. (2005). Production of mineral and organo-mineral fertilizers. Naukovyi visnyk NAU, 87, pp. 134-140. Retrived from http://www.nauu.kiev.ua

22. Yakushko, S.I. & Ivanov, V.P. (2008). Organo-mineral fertilizers: advantages and methods of production. Khimichna promyslovist Ukrainy, 86, No. 3, pp. 38-43. Retrived from http://essuir.sumdu.edu.ua/handle/123456789/24159from

23. Sahoo, R.K., Bhardwaj, D. & Tuteja, N. (2013). Biofertilizers: a sustainable eco-friendly agricultural approach to crop improvement. Plant Acclimation to Environmental Stress (pp. 403-432). New York: Springer. https://doi.org/10.1007/978-1-4614-5001-6_15

24. Tortosa, G., Alburquerque, J.A., Bedmar, E.J. & Cegarra, J. (2014). Strategies to produce commercial liquid organic fertilizers from «alperujo» composts. J. Cleaner Product., 82, pp. 37-44. https://doi.org/10.1016/j.jclepro.2014.06.083

25. Vitale, L., Polimeno, F., Ottaiano, L., Maglione, G., Tedeschi, A., Mori, M., Marco, A.De., Tommasi, P.Di. & Magliulo, V. (2017). Fertilizer type influences tomato yield and soil N2O emissions. Plant Soil Environ., 63, pp. 105-110. https://doi.org/10.17221/678/2016-PSE

26. Adecolan, O.F., Abdulrahaman, A., Azeez, G.A. & Animasaun, D.A. (2020). Effect of planting density and varying rates of organomineral fertilizer on growth, yield and nutritional quality of tomato (Solanum lycopersicum L.) Ann. Food Sci. Technol., 21, pp. 373-382. Retrived from www.afst.valahia.ro

27. Zakorchevnyi, Y.Y., Mykhalskaia, L.N. & Shvartau, V.V. (2012). Humic substances and fertilizers based on them. Gruntoznavstvo, 13, No. 1-2, pp. 60-78 [in Ukrainian]. http://nbuv.gov.ua/UJRN/grunt_2012_13_1-2_8

28. Havryliuk, V.A. & Demchuk, S.M. (2013). Organo-mineral fertilizers are a comprehensive solution for the use of raw materials. Ahroekolohichnyi zhurnal, 4, pp. 78-81 [in Ukrainian]. http://nbuv.gov.ua/ UJRN/agrog_2013_4_17

29. Vasylenko, M.H. (2015). Organo-mineral fertilizers increase the yield and improve the quality of products. Peredhirne ta hirske zemlerobstvo i tvarynnytstvo, 58, No. 1, pp. 22-30 [in Ukrainian]. http://nbuv.gov.ua/UJRN/pgzt_2015_58%281%29__7 https://doi.org/10.5864/d2015-012

30. Skrylnyk, Ye.V., Batsula, O.O. & Rozumna, R.A. (2000). Prospects and directions of production and application of organo-mineral fertilizers and biostimulants in agriculture of Ukraine.Visnyk ahrarnoi nauky Pivdennoho rehionu, 1, pp. 223-228 [in Ukrainian].

31. Brauer, M.O., Barney, D.L. & Robbins, J.A. (2009). Growing tomatoes in cool, shortseason locations. University of Idaho Extension, 864. Retrived from http://www.cals.uidaho.edu

32. Jensen, C.R., Battilani, A., Plauborg, F. & Psarras, G. (2010). Deficit irrigation based on drought tolerance and root signalling in potatoes and tomatoes. Agr. Wat. Manag., 98, pp. 403-413. https://doi.org/10.1016/j.agwat.2010.10.018

33. Nilsen, E.T., Freeman, J., Ruth Grene, R. & Tokuhisa, J. (2014). A rootstock provides water conservation for a grafted commercial tomato (Solanum lycopersicum L.) line in response to mild-drought conditions: a focus on vegetative growth and photosynthetic parameters. PLoS One, 22, pp. 9-12. https://doi.org/10.1371/journal.pone.0115380

34. Hulyev, Sh.B., Soluianova, T.H. & Asadova, A.Sh. (2019, March). Agrochemical substantiation of the application of fertilizer for tomatoes. Ovochivnytstvo i bashtannytstvo, istorychni aspekty, suchasnyi stan, problemy i perspektyvy rozvytku. 2 (pp. 167-171), s. Kruty, Chernihivska obl. Obukhiv: FOP Huliaieva V.M.

35. Ramesh, E., Sikder, S. & Vandana, K.S. (2023). Effect of integrated nutrient management for growth, yield and post-harvest quality of tomato. Int. J. Environm. and Climate Change, 13, No. 5, pp. 1-10. https://doi.org/10.9734/ijecc/2023/v13i51736

36. Ayeni, L.S. & Ezeh, O.S. (2017). Comparative effect of NPK 20:10:10, organic and organo-mineral fertilizer on soil chemical properties, nutrient uptake and yield of tomato (Lycopersicon esculentum). Appl. Tropical Agr., 1, No. 22, pp. 111-116. https://doi.org/ 10.13140/RG.2.2.18726.63049

37. Bindra, P., Sharma, S., Sahu, B.K., Bagdwal, H., Shanmugam, V. & Singh, M. (2023, March). Targeted nutrient application to tomato plant with MOF/Zeolite composite wrapped with stimuli-responsive biopolymer. Materials Today Commun., 34, p. 105264. https://doi.org/10.1016/j.mtcomm.2022.105264

38. Iashchuk, V.U., Koretskyi, A.P., Kovbasenko, R.V., Dmytriiev, O.P. & Kovbasenko, V.M. (2016). Humic substances are safe regulators of ecosystems. Kyiv: Nats. akad. ahrar. nauk Ukrainy [in Ukrainian]. Retrived from http://dspace.nuft.edu.ua/jspui/handle/123456789/28344

39. Morard, P., Eyheraguibel, B., Morard, M. & Silvestre, J. (2010). Direct effects of humic-like substance on growth, water and mineral nutrition of various species. J. Plant Nutr., 34, No. 1, pp. 46-59. https://doi.org/10.1080/01904167.2011.531358

40. Abdelhamid, M.T., Selim, E.M. & EL-Ghamry, A.M. (2011). Integrated effects of bio and mineral fertilizers and humic substances on growth, yield and nutrient contents of fertigated cowpea (Vigna unguiculata L.) grown on sandy soils. J. Agronomy, 10, pp. 34-39. https://doi.org/10.3923/ja.2011.34.39

41. Rose, M.T., Patti, A., Little, K. & Brown, A.L. (2014). A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Adv. Agronomy, 124, pp. 37-89. https://doi.org/10.1016/B978-0-12-800138-7.00002-4

42. Horova, A. & Skvortsova, T. (2018, October). The role of physiologically active substances of humus nature in the adaptation of plant organisms to the genotoxic effect of pesticides. Proceedings of the 3rd international conference «Restoration of the biotic potential of agroecosystems» (pp. 173-176). Dnipro: Roial Prynt [in Ukrainian].

43. Chen, Y. & Aviad, T. (1990). Effects of humic substances on plant growth. Humic Substances in Soil and Crop Sciences, pp. 161-186. Retrived from https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1238732 https://doi.org/10.2136/1990.humicsubstances.c7

44. Ponomarenko, S.P. (1998). Ukrainian plant growth regulators. Elementy rehuliatsii v roslynnytstvi: zb. nauk. prats (pp. 10-16) Kyiv: VVP «Kompas» [in Ukrainian].

45. Quaggiotti, S., Ruperti, B., Pizzeghello, D., Francioso, O., Tugnoli, V. & Nardi, S. (2004). Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.) J. Exp. Bot., 55, pp. 803-813. https://doi.org/10.1093/jxb/erh085

46. Nardi, S., Pizzeghello, D., Muscolo, A. & Vianello, A. (2002). Physiological effects of humic substances on higher plants (Review). Soil Biol. and Biochem., 34, pp. 1527-1536. https://doi.org/10.1016/S0038-0717(02)00174-8

47. Dzendzel, A.Yu. & Pyda, S.V. (2022). Regulation of the morphogenesis of edible tomato plants (Lycopersicon esculentum Mill.) by organo-mineral fertilizer «Smart» composite Martsynishin. VЖda a perspektivy, 7, No. 14, pp. 305-316. https://doi.org/10.52058/2695-1592-2022-7(14)-305-316

48. Karpenko, K.M. (2019). Technological and biological features of the formation of tomato productivity under organic production in the conditions of the Southern Steppe of Ukraine (Unpublished Candidate thesis). Tavriiskyi derzh. ahrotekh. un-t, Umanskyi nats. un-t sadivnytstva, Melitopol, Ukraine [in Ukrainian].

49. Dzendzel, A.Yu. & Pyda, S.V. (2022, July). Effect of Trevitan™ composite recultivant on seed quality and growth processes of edible tomato seedlings. Proceedings of the Science Conference «Ekolohichna bezpeka ta zbalansovane pryrodokorystuvannia v ahropromyslovomu vyrobnytstvi» (pp. 102-106). Kyiv [in Ukrainian].

50. Skrylnyk, Ye. & Kutova, A. (2014). Comprehensive help for plants. The Ukrainian Farmer, 3, pp. 86-89 [in Ukrainian].

51. Kalytka, V.V. & Karpenko, K.M. (2013). Effect of AKM growth regulator on the pigment complex and photosynthetic productivity of tomato plants. Naukovyi visnyk NUBiP. Ser. Ahronomiia, 183, Ch. 1, pp. 72-77 [in Ukrainian]. Retrivered from http://nbuv.gov.ua/UJRN/ nvnau_agr_2013_183%281%29__15

52. Kataoka, K., Sugimoto, K., Ohashi, H. & Yamada, H. (2017). Effect of organo-mineral fertilizer on tomato fruit production and incidence of blossom-end rot under salinity. The Horticult. J., 86, No. 3, pp. 357-364. https://doi.org/10.2503/hortj.OKD-041

53. Skliar, V.H. & Zlobin, Yu.A. (2015). Ecological physiology of plants. Sumy: Univ. knyha [in Ukrainian].

54. Zhuravlov, O.V., Shatkovskyi, A.P., Melnychuk, F.S. & Cherevychnyi, Yu.O. (2021). The transpiration coefficient of tomato depending on the granulometric composition of soils. Melioratsiia, zemlerobstvo, roslynnytstvo, No. 6. pp. 5-10 [in Ukrainian]. https://doi.org/10.32848/agrar.innov.2021.6.1

55. Dzendzel, A.Yu. (2021). The effect of the organo-mineral fertilizer «Smart» composite Martsynishin on the indicators of water exchange of leaves of edible tomato (Lycopersicon esculentum Mill.). Naukovi zapysky Ternopilskoho natsionalnoho pedahohichnoho universytetu imeni Volodymyra Hnatiuka. Ser. Biolohiia, 81, No. 4, pp. 72-81 [in Ukrainian]. https://doi.org/10.25128/2078-2357.21.4.10

56. Rady, M.M. (2012). A novel organo-mineral fertilizer can mitigate salinity stress effects for tomato production on reclaimed saline soil. South African J., 81, pp. 8-14. Retrieved from https://core.ac.uk/reader/82010320 https://doi.org/10.1016/j.sajb.2012.03.013

57. Olivera, G. (2012). Mineral nutrition of higher plants. London: Acad. press, pp. 138-160. Retrieved from https://www.academia.edu/6325059/Mineral_Nutrition_of_Higher_ Plants

58. Traore, A., Bandaogo, A.A., Savadogo, O.M., Sabam, F., Ouedraogo, A.L., Sako, Y., Serme, I. & Ouedraogo, S. (2022). Optimizing tomato (Solanum lycopersicum L.) growth with different combinations of organo-mineral fertilizers. Front. Sustain. Food Syst., 5, pp. 1-7. https://doi.org/10.3389/fsufs.2021.694628

59. Disciglio, G., Carlucci, A., Tarantino, A., Giuliani, M.M., Gagliardi, A., Frabboni, L., Libutti, A., Raimondo, M.L., Lops, F. & Gatta, G. (2018). Effect of olive-mill wastewater application, organo-mineral fertilization, and transplanting date on the control of Phelipanche ramosa in open-field processing tomato crops. Agronomy, 8, pp. 1-13. https://doi.org/10.3390/agronomy8060092

60. Khairi, A., Jayaputra, Padusung, Tejowulan, S. & Nurrachman (2023). Combination of bio-organo-mineral fertilizers on optimizing the growth and production of tomatoes (Solanum lycopersicum L.) in dryland environment. J. Ilm. Pertan., 20, No. 2, pp. 127-138. https://doi.org/10.31849/jip.v20i2.10901

61. Plys, Ya.V. (2020, November). The influence of humic preparations on the productivity of vegetable crops. Proceeding of the 5th Science Conference. «Aktualni problemy ta naukovi zvershennia molodi na pochatku tretoho tysiacholittia» (pp. 47-48.). Sloviansk [in Ukrainian].

62. Effa Effa, B.W., Demikoyo, D.S., Mibemu Guibinga, S., Nguema Ndong, M. & Bagafou, Y.A. (2023). Effects of organic fertilizer digestate on the growth of tomato (Lycopersicon esculentum Mill). bioRxiv. 2022-03. https://doi.org/10.1101/2022.03.30.486395

63. Islam, M.A., Islam, S., Akter, A., Rahman, Md.H. & Nandwani, D. (2017). Effect of organic and inorganic fertilizers on soil properties and the growth, yield and quality of tomato in mymensingh, bangladesh. Agriculture, 7, No. 3, pp. 18. https://doi.org/10.3390/agriculture7030018

64. Pohorielova, V. (2020). The influence of nutrition on the yield of tomatoes. Plantator, 51, No. 3, pp. 22-25 [in Ukrainian]. Retrieved from https://agrotimes.ua/article/vplyv-zhyvlennya-na-vrozhajnist-tomativ

65. Dzendzel, A.Yu. & Pyda, S.V. (2022). Effect of Trevitan™ composite recultivant on productivity and quality composition of edible tomato (Lycopersicon esculentum Mill.) fruits. Ekolohichni nauky, 4, No. 43, pp. 107-142 [in Ukrainian]. https://doi.org/10.32846/2306-9716/2022.eco.4-43.17

66. Dzendzel, A.Yu., Pyda, S.V. & Tryhuba, O.V. (2022). Formation of Lycopersicon esculentum Mill. yield under the influence of the combined organic and mineral fertilizer. Modern engineering and innovative technologies, 23, pp. 120-125. https://doi.org/10.30890/2567-5273.2022-23-01-013

67. George, E.F., Hall, M.A. & Klerk, G.D. (2008). Plant growth regulators. plant propagation by tissue culture. Dordrecht, pp. 751-773. https://doi.org/10.1007/978-1-4020-5005-3

68. Zavadska, O. & Parkhomuk, Ya. (2019). The quality of tomato fruits depends on the variety and degree of ripeness. Modern Sci. Res., 1, No. 9, pp. 88-91. https://doi.org/10.30889/2523-4692.2019-09-01-017

69. Xu, X., Wu, H., Yuan, Q., Wang, J., Cui, J. & Lin, A. (2022). Effects of selenium fertilizer application and tomato varieties on tomato fruit quality: A meta-analysis. Sci. Hort., 304, p. 111242. https://doi.org/10.1016/j.scienta.2022.111242

70. Yuechen, Y., Weihui, X., Yunlong, H., Renmao, T. & Zhigang, W. (2022). Bacillus velezensis YYC promotes tomato growt hand induces resistance against bacterial wilt. Biological Control, 172, p. 104977. https://doi.org/10.1016/j.biocontrol.2022.104977

71. Rembialkowska, E. (2007). Quality of plant products from organic agriculture. J. Sci. Food Agr., 87, No. 15, pp. 2757-2762. https://doi.org/10.1002/jsfa.3000

72. Chaika, T.O. (2011). Effectiveness of organic agriculture in Ukraine. Visn. Polt. derzh. ahrar. akademii, 4, pp. 160-164. [in Ukrainian]. Retrieved from http://dspace.mnau.edu.ua/jspui/bitstream/123456789/445/1/%D0%9F%D0%BE%D0%BB%D1%82%D0%B0%D0%B2%D0%B0.pdf

73. Oliveira, A.B., Moura, C.F.H., Gomes-Filho, E., Marco, C.A, Urban, L. & Raquel, M.M.A. (2013). The impact of organic farming on quality of tomatoes is associated to increased oxidative stress during fruit development. PLoS One, 8, No. 2, pp. 56-64. https://doi.org/10.1371/journal.pone.0056354

74. Lundegardh, B. & Martensson, A. (2003). Organically produced plant foods - evidence of health benefits. Soil Plant Sci., No. 53, pp. 3-15. https://doi.org/10.1080/09064710310006490

75. Ivashkiv, L.Ya. (2009). Basic principles of healthy nutrition. Visn. Lviv. in-tu ekonomiky i turyzmu, No. 4, pp. 18-23 [in Ukrainian].

76. Bohach, H.Y., Zubachev, S.R., Shablyn, P.A. & Tertyshnyi, A.S. (2007). Organic production. Donetsk: Format Plius [in Russian].

77. Vallverdu-Queralt, A., Remon, A.M., Casals-Ribes, I. & Lamuela- Raventos, R.M. (2012). Is there any difference between the phenolic content of organic and conventional tomato juices? Food chemistry, 130, No. 1, pp. 222-227. https://doi.org/10.1016/j.foodchem.2011.07.017

78. Carricondo-Martinez, I., Berti, F. & Salas-Sanju«n, M.d.C. (2022). Different organic fertilization systems modify tomato quality: an opportunity for circular fertilization in intensive horticulture. Agronomy, 12, pp. 174-183. https://doi.org/10.3390/agronomy12010174

79. Deinychenko, H.V. & Yudicheva, O.P. (2012). The use of biofortification traditions to regulate the chemical composition of tomato vegetables. Kharchova nauka i tekhnolohiia, 19, No. 2, pp. 42-45 [in Ukrainian]. Retrived from http://nbuv.gov.ua/UJRN/ Khnit_2012_2_13

80. Stezhko, O.V. (2012). Ecological assessment of the influence of fertilization systems on the content of heavy metals in tomato products. Zbirnyk naukovykh prats Vinnytskoho natsionalnoho ahrarnoho universytetu. Ser. Silskohospodarski nauky, 4(63), 2, pp. 17-25 [in Ukrainian]. Retrieved from http://socrates.vsau.org/repository/getfile.php/5113.pdf

81. Drakou, M., Birmpa, A., Koutelidaris, A.E., Komaitis, M., Panagou, E.Z. & Kapsokefalou, M. (2015). Total antioxidant capacity, total phenolic content and iron and zinc dialyzability in selected Greek varieties of table olives, tomatoes and legumes from conventional and organic farming. Int. J. Food Sci. Nutrit., 66, No. 2, pp. 197-202. https://doi.org/10.3109/09637486.2014.979320

82. Woese, K., Lange, D. & Boess, C. (1997). A comparison of organically and onventionally grown foods - results of a review of the relevant literature. J. Sci. of Food    Agr., 74, pp. 281-293. https://doi.org/10.1002/(SICI)1097-0010(199707)74:3<281:: AID-JSFA794>3.0.CO;2-Z https://doi.org/10.1002/(SICI)1097-0010(199707)74:3<281::AID-JSFA794>3.0.CO;2-Z

83. Bourn, D. & Prescott, J. (2002). A comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced. Food Sci. & Nutrit., 42, No. 1, pp. 1-34. https://doi.org/10.1080/10408690290825439

84. Hajslova, J., Schulzova, V., Slanina, P., Janne, K., Hellena, K.E. & Andersson, C.H. (2005). Quality of organically and conventionally grown potatoes: four-year study of micronutrients, metals, secondary metabolites, enzymic browning and organoleptic properties. Food Additives & Contaminants, 22, No. 6, pp. 514-534. Retrived from https://web.vscht.cz/~hajslovj/publications/hajslova_potatoes_fac_vol22_p514-534.pdf https://doi.org/10.1080/02652030500137827

85. Novotn«, H., Kmiecik, O., GaY·zka, M., Krtkov«, V., Hurajov«, A., Schulzov«, V., Hallmann, E., RembiaYkowska, E., Hajлlov«, J. (2012). Metabolomic fingerprinting employing DART-TOFMS for authentication of tomatoes and peppers from organic and conventional farming. Food Additives & Contaminants, 29, No. 9, pp. 1335-1346. Epub 2012 Jul 19. https://doi.org/10.1080/19440049.2012.690348

86. Kapoulas, N., Zoran, S.I. & Purovka, M. (2013). Effects of organic and conventional methods on mineral content and taste parameters in tomato fruit. Agriculture & Forestry, 59, No. 3, pp. 23-34. Retrived from http://89.188.43.75/agricultforest/20130920-Kapoulas%20et%20al.pdf

87. Resendiz-Nava Carolina, N., Fernando Alonso-Onofre, Hilda V. Silva-Rojas, Angel Rebollar-Alviter, Dulce M. Rivera-Pastrana, Matthew J. Stasiewicz, Gerardo M. Nava & Edmundo M. Mercado-Silva. (2023). Tomato plant microbiota under conventional and organic fertilization regimes in a soilless culture system. Microorganisms, 11, No. 7, p. 1633. https://doi.org/10.3390/microorganisms11071633

88. Oliveira, R.C., Luz, J.M.Q., Lana, R.M.Q., Queiroz, A.A. & Bertoldo, D.L. (2020). Biofertilizer in leaf and drip applications: an alternative to increase tomato productivity. Hort. J., 11, pp. 1-6. https://doi.org/10.14295/cs.v11i0.3376

89. Lahoz, I., Leiva-Brondo, M., Marti, R., Macua, J.I., Campillo, C., Roselly, S. & Cebolla-Cornejo, J. (2016). Influence of high lycopene varieties and organic farming on the production and quality of processing tomato. Sci. Hort., 204, pp. 128-137. https://doi.org/10.1016/j.scienta.2016.03.042

90. Deinychenko, H.V. & Yudicheva, O.P. (2012). The use of biofortification traditions to regulate the chemical composition of tomato vegetables. Kharchova nauka i tekhnolohiia, 2, No. 19, pp. 42-45 [in Ukrainian]. Retrived from http://nbuv.gov.ua/UJRN/ Khnit_2012_2_13

91. Vyrodov, O.S. & Yaremenko, S.S. (2013). Quality of processed vegetable products depending on different fertilization systems. Naukovi pratsi Instytutu bioenerhetychnykh kultur i tsukrovykh buriakiv, No. 17 (1), pp. 50-54 [in Ukrainian]. Retrived from http://nbuv.gov.ua/UJRN/znpicb_2013_17%281%29__9

92. Jungiє, D., Gunjaca, J., Herak-Custic, M., Simunic, I., Ban, D. & Sraka, M. (2017). Content of mineral N in soil and tomato yields considering fertigation and mulch. Agr. Consp. Sci., 82, No. 4, pp. 361-365. Retrived from https://hrcak.srce.hr/ 193523

93. Tonfack, L.B. , Youmbi, E., Amougou, Y.A.N. & Bernadac, A. (2013). Effect of organic/inorganic-cation balanced fertilizers on yield and temporal nutrient allocation of tomato fruits under andosol soil conditions in Sub-Saharan Africa. Int. J. Agr. and Food Res., 2, No. 2, pp. 27-37. https://doi.org/10.24102/ijafr.v2i2.154

94. Dzendzel, A.Yu., Pyda, S.V. & Tryhuba, O.V. (2022). Elemental composition of the fruits of Lycopersicon esculentum Mill. under the influence of organo-mineral fertilizer «Smart» composite Martsynishyn®». Acta Biol. Ukr., 1, pp. 14-22 [in Ukrainian]. https://doi.org/10.26661/2410-0943-2022-1-02

95. Heitz, M., CIpukan, J., Heitz, A.K., Chiper, L., Radu, A. & Pojar-Fenesan, M. (2011). Fertilization systems in the tomato crop in the field. Bul. UASVM Hort., 68, pp. 235-237. Retrieved from https://ambientic.validapps.ro/index.php/horticulture/article/view/6948/6214