Проаналізовано новітні підходи до праймування насіння, які застосовуються з метою підвищення його посівних якостей та стійкості рослин до стресових чинників на ранніх фазах розвитку. Розглянуто особливості фізіологічних процесів, котрі супроводжують проростання насіння. Зазначено, що ці процеси пов’язані зі сприйняттям зовнішніх сигналів (насамперед зміни температури й вологості), активацією сигнальної мережі та трансдукцією сигналів у генетичний апарат, а отже схожі з переходом організму в класичний стресовий стан. Наголошено, що за активації передгермінативного метаболізму посилюється утворення активних форм кисню, яке може призводити до окиснювальних пошкоджень ліпідів, білків і нуклеїнових кислот. Відзначено роль систем антиоксидантного захисту і репарації ДНК у запобіганні пошкоджень зародка. Схарактеризовано значення змін у гормональному балансі, зокрема зменшенння вмісту й активності абсцизової кислоти та підвищення кількості гіберелінів за проростання насіння. Описано феноменологію й механізми активації стрес-протекторних систем внаслідок праймування насіння. Наведено класифікацію методів праймування. Особливу увагу зосереджено на ефектах сигнальних сполук або їх донорів як агентів для праймування. Висвітлено вплив праймування донорами газотрансмітерів (оксиду азоту, сірководню і монооксиду вуглецю) на проростання насіння, у тому числі за несприятливих умов. Подано дані про можливі фізіологічні механізми дії на проростання насіння малодосліджених сполук з гормональною активністю: мелатоніну, b- і g-аміномасляних кислот тощо. Вказано, що праймування насіння є перспективним, економним і здебільшого екологічно безпечним способом управління ростовими й адаптивними процесами у рослин.
Ключові слова: проростання насіння, праймування, активні форми кисню, газотрансмітери, фітогормони, антиоксидантна система
Повний текст та додаткові матеріали
У вільному доступі: PDFЦитована література
1. Hubbard, M., Germida, J. & Vujanovic, V. (2012). Fungal endophytes improve wheat seed germinationunder heat and drought stress. Botany, 90, pp. 137-149. https://doi.org/10.1139/b11-091
2. Waqas, M., Korres, N.E., Khan, M.D., Nizami, Al.-S., Deeba, F., Ali, I. & Hussain, H. (2019). Advances in the concept and methods of seed priming. In: Hasanuzzaman, M., Fotopoulos, V. (eds.), Priming and Pretreatment of Seeds and Seedlings. Springer Nature Singapore Pte Ltd., pp. 11-41. https://doi.org/10.1007/978-981-13-8625-1_2
3. Romanenko, O., Kushch, I., Zayets, S. & Solodushko, M. (2018). Viability of seeds and sprouts of winter crop varieties under drought conditions of Steppe. Agroecol. J., 1, pp. 87-95 [in Ukrainian]. https://doi.org/10.33730/2077-4893.1.2018.160584
4. Paparella, S., Arayjo, S.S., Rossi, G., Wijayasinghe, M., Carbonera, D. & Balestrazzi, A. (2015). Seed priming: state of the art and new perspectives. Plant Cell Rep., 34 (8), pp. 1281-1293. https://doi.org/10.1007/s00299-015-1784-y
5. Ibrahim, E.A.-A. (2019). Fundamental Processes Involved in Seed Priming. In: Hasanuzzaman, M., Fotopoulos, V. (eds.), Priming and Pretreatment of Seeds and Seedlings. Springer Nature Singapore Pte Ltd., pp. 63-115. https://doi.org/10.1007/978-981-13-8625-1_4
6. Meseret, E. (2020). Effect of priming on seed quality of soybean [Glycine max (L.) Merrill]. Varieties at Assosa, Western Ethiopia. Sci. Res., 8 (3), pp. 59-72. https://doi.org/10.11648/j.sr.20200803.11
7. Mitter, B., Sessitsch, A. & Naveed, M. (2018). Method for producing plant seed containing endophytic microorganisms. U.S. patent app. Pub. US 2018 / 0132486 A1
8. Hasanuzzaman, M. & Fotopoulos,V. (2019). Preface. In: Hasanuzzaman, M., Fotopoulos, V. (eds.), Priming and Pretreatment of Seeds and Seedlings. Springer Nature Singapore Pte Ltd., pp. v-vi. https://doi.org/10.1007/978-981-13-8625-1
9. Zhou, Z.-H., Wang, Y., Ye, X.-Y. & Li, Z.-G. (2018). Signaling molecule hydrogen sulfide improves seed germination and seedling growth of maize (Zea mays L.) under high temperature by inducing antioxidant system and osmolyte biosynthesis. Front. Plant Sci. 9, art. 1288. https://doi.org/10.3389/fpls.2018.01288
10. Singh, S., Kumar, V., Kapoor, D., Kumar, S., Singh, S., Dhanjal D.S., Datta, S., Samuel, J., Dey, P., Wang, S., Prasad, R. & Singh, J. Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions. Physiol. Plant., 2020, 168 (2), pp. 301-317. https://doi.org/10.1111/ppl.13002
11. Ashraf, M.A., Rasheed, R., Hussain, I., Iqbal, M., Riaz, M. & Arif, M.S. (2019). Chemical priming for multiple stress tolerance. In: Hasanuzzaman, M., Fotopoulos, V. (eds.), Priming and Pretreatment of Seeds and Seedlings. Springer Nature Singapore Pte Ltd., pp. 385-415. https://doi.org/10.1007/978-981-13-8625-1_19
12. Ellouzi, H., Sghayar, S. & Abdelly, C. (2017). H2O2 seed priming improves tolerance to salinity; drought and their combined effect more than mannitol in Cakile maritima when compared to Eutrema salsugineum. J. Plant Physiol., 210, pp. 38-50. https://doi.org/10.1016/j.jplph.2016.11.014
13. Kolupaev, Y.E., Karpets, Y.V., Shkliarevskyi, M.A., Yastreb, T.O., Plohovska, S.H., Yemets, A.I. & BlumeY.B. (2022). Gasotransmitters in plants: Mechanisms of participation inadaptive responses. Open Agricult. J., 16 (Suppl-1, M5), art. e187433152207050. https://doi.org/10.2174/18743315-v16-e2207050
14. Karle, SB, Guru, A, Dwivedi, P. & Kumar, K. (2021). Insights into the role of gasotransmitters mediating salt stress responses in plants. J. Plant Growth Regul., 40, pp. 2259-2275. https://doi.org/10.1007/s00344-020-10293-z
15. Kolupaev, Y.E., Karpets, Y.V., Beschasniy, S.P. & Dmitriev, A.P. (2019). Gasotransmitters and their role in adaptive reactions of plant cells. Cytol. Genet., 53 (5), pp. 392-406. https://doi.org/10.3103/S0095452719050098
16. Yao, Y., Yang, Y., Li ,C., Huang, D., Zhang, J., Wang, C, Li, W., Wang, N., Deng, Y. & Liao, W. (2019). Research progress on the functions of gasotransmitters in plant responses to abiotic stresses. Plants, 8 (12), art. 605. https://doi.org/10.3390/plants8120605
17. Kopyra, M. & GwЩьdь, E.A. (2003). Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol. Biochem., 41, pp. 1011-1017. https://doi.org/10.1016/j.plaphy.2003.09.003
18. Sako, K., Nguyen, M.H. & Seki, M. (2020).Advances in chemical priming to enhance abiotic stresstolerance in plants. Plant Cell Physiol., 61 (12), pp. 1995-2003. https://doi.org/10.1093/pcp/pcaa119
19. Kim, J.M., To, T.K., Matsui, A., Tanoi, K., Kobayashi, N.I., Matsuda, F., Habu, Y., Ogawa, D., Sakamotom, T., Matsunaga, S., Bashir, K., Rasheed, S., Ando, M., Takeda, H., Kawaura, K., Kusano, M., Fukushima, A., Takaho, A.E., Kuromori, T., Ishida, J., Morosawa, T., Tanaka, M., Torii, C., Takebayashi, Y., Sakakibara, H., Ogihara, Y., Saito, K., Shinozaki, K., Devoto, A. & Seki, M. (2017). Acetate-mediated novel survival strategy against drought in plants. Nature Plants, 3, art. 17097. https://doi.org/10.1038/nplants.2017.97
20. Bray, C.M. (1995). Biochemical processes during the osmopriming of seeds. In: Kigel, J, Galili, G (eds) Seed development and germination. Marcel Dekker Inc, New York, pp 767-789. https://doi.org/10.1201/9780203740071-28
21. Kranner, I., Minibayeva, F.V., Beckett, R.P. & Seal, C.E. (2010). What is stress? Concepts, definitions and applications in seed science. New Phytol., 188 (3), pp. 655-73. https://doi.org/10.1111/j.1469-8137.2010.03461.x
22. Hoekstra, F.A., Golovina, E.A., Van Aelst, A.C. & Hemminga, M.A. (1999). Imbibitional leakage from anhydrobiotes revisited. Plant Cell Environ., 22, pp. 1121-1131. https://doi.org/10.1046/j.1365-3040.1999.00491.x
23. Waterworth, W.M., Masnavi, G., Bhardwaj, R.M., Jiang, Q., Bray, C.M. & West, C.E. (2010) A plant DNA ligase is an important determinant of seed longevity. Plant J., 63, pp. 848-860. https://doi.org/10.1111/j.1365-313X.2010.04285.x
24. Balestrazzi, A., Confalonieri, M., Macovei, A., Dona, M. & Carbonera, D. (2011). Genotoxic stress and DNA repair in plants: emerging functions and tools for improving crop productivity. Plant Cell Rep., 30, pp. 287-295. https://doi.org/10.1007/s00299-010-0975-9
25. Rajjou, L., Lovigny, Y., Groot, S.P.C., Belghaz, M., Job, C. & Job. D. (2008). Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol., 148, pp. 620-641. https://doi.org/10.1104/pp.108.123141
26. Job, C., Rajjou, L., Lovigny, Y., Belghazi, M. & Job, D. (2005). Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol., 138, pp. 790-802. https://doi.org/10.1104/pp.105.062778
27. Oracz, K., El-Maarouf Bouteau, H., Farrant, J.M., Cooper, K., Belghazi, M., Job, C., Job, D., Corbineau, F. & Bailly, C. (2007). ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J., 50, pp. 452-465. https://doi.org/10.1111/j.1365-313X.2007.03063.x
28. Muller, K, Linkies, A., Vreeburg, R.A.M., Fry, S.C., Krieger-Liszkay, A. & Leubner-Metzger, G. (2009). In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol., 150, .pp. 1855-1865. https://doi.org/10.1104/pp.109.139204
29. Kepczynski, J., Cembrowska Lech, D. & Sznigir, P. (2017). Interplay between nitric oxide,ethylene, and gibberellic acid regulating the release of Amaranthus retroflexus seeddormancy. Acta Physiol. Plant., 39, art. 254. https://doi.org/10.1007/s11738-017-2550-2
30. Liu, X., Wang, L., Liu, L., Guo, Y. & Ren, H. (2011). Alleviating effect of exogenous nitric oxide incucumber seedling against chilling stress. Afr. J. Biotechnol., 10, pp. 4380-4386.
31. Arc, E., Sechet, J., Corbineau, F., Rajjou, L. & Marion-Poll, A. (2013). ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front. Plant Sci., 4, art. 63. https://doi.org/10.3389/fpls.2013.00063
32. Jasid, S., Simontacchi, M. & Puntarulo, S. (2008). Exposure to nitric oxide protectsagainst oxidative damage but increases the labile iron pool in sorghum embryonic axes. J. Exp. Bot., 59, pp. 3953-3962. https://doi.org/10.1093/jxb/ern235
33. Lozano Juste, J., Colom Moreno, R. & Leon, J. (2011). In vivo protein tyrosine nitrationin Arabidopsis thaliana. J. Exp. Bot., 62, pp. 3501-3517. https://doi.org/10.1093/jxb/err042
34. Rajjou, L., Duval, M., Gallardo, K.,Catusse, J., Bally, J., Job, C. & Job, D. (2012). Seed germination and vigor. Ann. Rev. Plant Biol., 63, pp 507-533. https://doi.org/10.1146/annurev-arplant-042811-105550
35. Signorelli, S. & Considine, M.J. (2018). Nitric oxide enables germination by a fourprongedattack on ABA induced seed dormancy. Front. Plant Sci., 9, art. 296. https://doi.org/10.3389/fpls.2018.00296
36. ћHrov«, J., Sedl«йov«, M., Piterkov«, J., Luhov«, L. & Petйivalskъ, M. (2011). The role of nitric oxide in the germination of plant seeds and pollen. Plant Sci., 181 (5), pp. 560-572. https://doi.org/10.1016/j.plantsci.2011.03.014
37. Bailly, C. (2004). Active oxygen species and antioxidants in seed biology. Seed Sci. Res., 14, pp. 93-107. https://doi.org/10.1079/SSR2004159
38. Kolbert, Z.; Feigl, G.; Freschi, L. & PoЩr, P. Gasotransmitters in Action: Nitric Oxide-Ethylene Crosstalk during Plant Growth and Abiotic Stress Responses. Antioxidants, 2019, 8, 167. https://doi.org/10.3390/antiox8060167
39. Lin, Y,, Yang, L., Paul, M., Zu, Y. & Tang, Z.(2013). Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: evidence for the involvement of nitric oxide simulated by sodium nitroprusside. Plant Physiol Biochem., 73, pp. 211-218. https://doi.org/10.1016/j.plaphy.2013.10.003
40. Oracz K., El-Maarouf-Bouteau, H., Kranner, I., Bogatek, R., Corbineau, F. & Bailly, C. (2009). The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol., 150, pp. 494-505. https://doi.org/10.1104/pp.109.138107
41. Yemets, A. I., Karpets, Y.V., Kolupaev, Y.E. & Blume, Y.B. (2019). Emerging technologies for enhancing ROS/RNS homeostasis. In: Reactive oxygen, nitrogen andsulfur species in plants: Production, metabolism, signaling and defense mechanisms, vol. 2. (John Wiley & Sons Ltd), pp. 873-922. https://doi.org/10.1002/9781119468677.ch39
42. Huang, Z., Boubriak, I., Osborne, D.J., Dong, M. & Gutterman, Y. (2008). Possible role of pectin-containingmucilage and dew in repairing embryo DNA of seeds adapted to desert conditions. Ann. Bot., 101, pp. 277-283. https://doi.org/10.1093/aob/mcm089
43. Sen, A., Johnson, R. & Puthur, J.T. Seed priming: A Cost-effective Strategy to Impart Abiotic Stress Tolerance. In: Husen, A. (ed.), Plant Performance Under Environmental Stress, Springer Nature Switzerland AG 2021, p. 459. https://doi.org/10.1007/978-3-030-78521-5_18
44. Taylor, A.G., Allen, P.S., Bennet, M.A., Bradford, K.J., Burris, J.S. & Misra, M.K. (1998). Seed enhancements. Seed Sci. Res., 8, pp. 245-256. https://doi.org/10.1017/S0960258500004141
45. Heydecker, W. & Coolbear, P. (1977). Seed treatments for improved performance-survey and attempted prognosis. Seed Sci. Tech., 5, pp. 353-425.
46. Huang, Y.M., Wang, H.H. & Chen, K.H. (2002). Application of seed priming treatments in spinach (Spinacia oleracea L.) production. J. Chinese Soc. Hort. Sci., 48, pp. 117-123.
47. Khalil, S., Moursy, H.A. & Saleh, S.A. (1983). Wheat plant reactions to presowing heat hardening of grains. II. Changes in photosynthetic pigments, nitrogen and carbohydrate metabolism. Bull. Egyptian Soc. Physiol. Sci., 3, pp. 161-175.
48. Nasri, N., Kaddour, R., Mahmoudi, H., Baatour, O., Bouraoui, N. & Lachal, M. (2011). The effect of osmopriming on germination, seedling growth and phosphatase activities of lettuce under saline condition. Afr. J. Biotechnol., 10 (65), pp. 14366-14372. https://doi.org/10.5897/AJB11.1204
49. Shah, A.R., Ara, N. & Shafi, G. (2011). Seed priming with phosphorus increased germination and yield of okra. Afr. J. Agric. Res., 6 (16), pp. 3859-3876.
50. Meseret, E. (2020). Effect of priming on seed quality of soybean [Glycine max (L.) Merrill] varieties at Assosa, Western Ethiopia. Sci. Res.; 8 (3), pp. 59-72. https://doi.org/10.11648/j.sr.20200803.11
51. Aboutalebian, M.A. & Nazari, S. (2017). Seedling emergence and activity of some antioxidant enzymes of canola (Brassica napus) can be increased by seed priming. J. Agric. Sci., 155 (10), pp. 1541-1552. https://doi.org/10.1017/S0021859617000661
52. Sedghi, M., Amanpour-Balaneji, B. & Bakhshi, J. (2014). Physiological enhancement of medicinal pumpkin seeds (Cucurbita pepo var. styriaca) with different priming methods. Iran. J. Plant Physiol., 5 (1), pp. 1209-1215.
53. Miransari, M. & Smith, D.L. (2014). Plant hormones and seed germination. Environ. Exp. Bot., 99, pp. 110-121. https://doi.org/10.1016/j.envexpbot.2013.11.005
54. Younesi, O. & Moradi, A. (2015). Effect of priming of seeds of Medicago sativa 'bami' with gibberellic acid on germination, seedlings growth and antioxidant enzymes activity under salinity stress. J. Hortic. Res., 22, pp. 167-174. https://doi.org/10.2478/johr-2014-0034
55. Farooq, M., Aziz, T., Basra, S.M.A., Cheema, M.A. & Rehman, H. (2008). Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. J. Agron. Crop. Sci., 194, pp. 161-168. https://doi.org/10.1111/j.1439-037X.2008.00300.x
56. Azooz, M.M. (2009). Salt stress mitigation by seed priming with salicylic acid in two faba bean genotypes differing in salt tolerance. Int. J. Agric. Biol., 11, pp. 343-350.
57. Pouramir-Dashtmian, F., Khajeh-Hosseini, M. & Esfahani, M. (2014). Improving rice seedling physiological and biochemical processes under low temperature by seed priming with salicylic acid. Int. J. Plant Anim. Environ. Sci., 4 (2), pp. 565-572.
58. Lada, R., Stiles, A., Surette, M.A., Caldwell, C., Nowak, J., Sturz, A.V. & Blake, T.J. (2004). Stand establishment technologies for processing carrots. Acta Hortic., 631, pp. 105-116. https://doi.org/10.17660/ActaHortic.2004.631.12
59. Namdari, A. & Baghbani, A. (2017). Consequences of seed priming with salicylic acid and hydro priming on Smooth Vetch seedling growth under water deficiency. J. Agric. Sci., 9 (12), art. 259. https://doi.org/10.5539/jas.v9n12p259
60. Kots, G.P., Yastreb, T.O., Shvidenko, M.V., Batova, O.M., Miroshnichenko, M.M., Turenko, V.P. & Kolupaev, Yu.Ye. (2012). Influence of exogenous salicylic and succinic acids on millet plants resistance to abiotic and biotic stressors. Visn. Hark. nac. agrar. univ., Ser. Biol., 1 (25), pp. 32-38.
61. Rao, M.J., Hussain, S., Anjum, M.A., Saqib, M., Ahmad, R., Khalid, M.F., Sohail, M., Nafees, M., Ali, M.A., Ahmad, N., Zakir, I. & Ahmad, S. (2019). Effect of Seed Priming on Seed Dormancy and Vigor. In: Hasanuzzaman, M., Fotopoulos, V. (eds.), Priming and Pretreatment of Seeds and Seedlings. Springer Nature Singapore Pte Ltd., pp. 135-145. https://doi.org/10.1007/978-981-13-8625-1_6
62. Zhang, S., Hu, J., Zhang, Y., Xie, X.J. & Knapp A. (2007) Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust. J. Agric. Res., 58 (8), art. 811. https://doi.org/10.1071/AR06253
63. Vayner, A.A., Kolupaev, Yu.E., Oboznyi, O.I, Yastreb, T.O. & Khripach, V.A. Influence of 24 epibrassinolide on resistance of millet (Panicum miliaceum L.) plants to water stress. Visn. Hark. nac. agrar. univ., Ser. Biol., 2014, Issue 2 (32), pp. 46-55.
64. Niranjan, R.S., Shetty, N.P. & Shetty, H.S. (2004). Seed bio-priming with Pseudomonas fluorescens isolates enhances growth of pearl millet plants and induces resistance against downy mildew. Int. J. Pest. Manag., 50, pp. 41-48. https://doi.org/10.1080/09670870310001626365
65. Mahmood, A., Turgay, O.C., Farooq, M. & Hayat, R. (2016). Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol. Ecol., 92 (8), pp. 1-14. https://doi.org/10.1093/femsec/fiw112
66. Ali, M.A., Hussain, S., Iqbal, M., Saboor, S.A., Mustafa, G. & Ahmed, N. (2019). Microbial Inoculation of Seeds for Better Plant Growth and Productivity. In: Hasanuzzaman, M., Fotopoulos, V. (eds), Priming and Pretreatment of Seeds and Seedlings. Springer, Singapore, pp. 523-550. https://doi. Ahmad,org/10.1007/978-981-13-8625-1_26 https://doi.org/10.1007/978-981-13-8625-1_26
67. Correa-Aragunde, N., Graziano, M. & Lamattina, L. ( 2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta; 218 (6), pp. 900-917. https://doi.org/10.1007/s00425-003-1172-7
68. Wilson, I.D., Neill, S.J. & Hancock, J.T. (2008). Nitric oxide synthesis and signaling in plants. Plant Cell Environ; 31 (5), 622-631. https://doi.org/10.1111/j.1365-3040.2007.01761.x
69. Yemets, A.I., Krasylenko, Yb.A., Lytvyn, DI, Sheremet, Ya.A. & Blume. Ya.B. (2011). Nitric oxide signaling via cytoskeleton in plants. Plant Sci., 181 (5), pp. 545-54. https://doi.org/10.1016/j.plantsci.2011.04.017
70. Hancock, J.T.(2019). Hydrogen sulfide and environmental stresses. Environ. Exp. Bot; 61 (9), 50-56. https://doi.org/10.1016/j.envexpbot.2018.08.034
71. Mur, L.A.J., Mandon, J., Persijn, S., Cristescu, S.M., Moshkov, I.E., Novikova, G.V., Hall, M.A, Harren, F.J.M., Hebelstrup, K.H. & Gupta, K.J. (2013). Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants, 5, frt. pls052. https://doi.org/10.1093/aobpla/pls052
72. Corpas, F.J. & Barroso, J.B. (2017). Nitric oxide synthase-like activity in higher plants. Nitric Oxide, 68, 5-6. https://doi.org/10.1016/j.niox.2016.10.009
73. Wang, P.G., Xian, M., Tang, X., Wu, X., Wen, Z., Cai, T. & Janczuk, A.J. (2002). Nitric oxide donors: chemical activities and biological applications. Chem Rev.,102 (4),pp. 1091-134. https://doi.org/10.1021/cr000040l
74. Oliveira, C., Benfeito, S., Fernandes, C., Cagide, F., Silva, T., Borges, F. (2018). NO and HNO donors, nitrones, and nitroxides: Past, present, and future. Med. Res. Rev., 38 (4), pp. 1159-1187. https://doi.org/10.1002/med.21461
75. Bethke, P.C., Gubler, F., Jacobsen, J.V. & Jones, R.L. (2004). Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta, 219, pp. 847-855. https://doi.org/10.1007/s00425-004-1282-x
76. Hajihashemi, S., Skalicky, M., Brestic, M. & Pavla, V. (2020). Cross-talk betweennitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. At seed germination stage. Plant Physiol. Biochem., 154, pp. 657-664. https://doi.doi.org/10.1016/j.plaphy.2020.07.022 https://doi.org/10.1016/j.plaphy.2020.07.022
77. Ali, Q., Daud, M.K., Haider, M.Z., Ali, S., Rizwan, M., Aslam, N., Noman, A., Iqbal, N., Shahzad, F., Deeba, F., Ali, I., Zhu & S.J. (2017). Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiol. Biochem., 119, pp. 50-58. https://doi.doi.org/10.1016/j.plaphy.2017.08.010 https://doi.org/10.1016/j.plaphy.2017.08.010
78. Habib, N., Akram, M., Javed, M., Azeem, M., Ali, Q., Shaheen, H. & Ashraf, M. (2016). Nitric oxide regulated improvement in growth and yield of rice plants grown under salinity stress: antioxidant defense system. Appl. Ecol. Environ. Res., 14, pp. 91-105. https://doi.org/10.15666/aeer/1405_091105
79. Gadelha, C.G., Miranda, R.S., Alencar, N.L.M., Costa, J.H., Prisco, J.T. & Gomes-Filho, E. (2017). Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. J. Plant Physiol., 212, pp. 69-79. https://doi.org/10.1016/j.jplph.2017.02.005
80. Kaur, K. & Kaur, K. (2018). Nitric oxide improves thermotolerance in spring maize by inducing varied genotypic defense mechanisms. Acta Physiol. Plant, 40, art. 55. https://doi.org/10.1007/s11738-018-2632-9
81. Sepehri, A. & Rouhi, H.R. (2016). Enhancement of seed vigor performance in aged groundnut (Arachis hypogaea L.) seeds by sodium nitroprusside under drought stress. Philipp. Agric. Sci., 99, pp. 339-347.
82. Fan, Q.-J. & Liu, J.-H. (2012). Nitric oxide is involved in dehydration/drought tolerance in Poncirus trifoliata seedlings through regulation of antioxidant systems and stomatal response. Plant Cell Rep., 31, pp. 145-154. https://doi.org/10.1007/s00299-011-1148-1
83. Li, X., Jiang, H., Liu, F., Cai, J., Dai, T., Cao, W. & Jiang, D. (2013). Induction of chilling tolerance in wheat during germination by pre-soaking seed with nitric oxide and gibberellin. Plant Growth Regul., 71, pp. 31-40. https://doi.org/10.1007/s10725-013-9805-8
84. Zhang, H., Hu, S.L., Zhang, Z.J., Hu, L.Y., Jiang, C.X., Wei, Z.J., Liu, J., Wang, H.L. & Jiang, S.T. (2011). Hydrogen sulfide acts as a regulator of flower senescence in plants. Postharv. Biol. Technol., 60 (3), pp. 251-257. https://doi.org/10.1016/j.postharvbio.2011.01.006
85. Li, Z.G., Gong, M., Xie, H., Yang, L. & Li, J. (2012). Hydrogen sulfide donor sodium hydrosulfide induced heat tolerance in tobacco (Nicotiana tabacum L) suspension cultured cells and involvement of Ca2+ and calmodulin. Plant Sci., 185-186, pp. 185-189. https://doi.org/10.1016/j.plantsci.2011.10.006
86. Ziogas, V., Molassiotis, A., Fotopoulos, V. & Tanou, G. (2018). Hydrogen sulfide: Apotent tool in postharvest fruit biology and possible mechanism ofaction. Front. Plant Sci., 9, art. 1375. https://doi.doi.org/10.3389/fpls.2018.01375] [PMID: 30283483 https://doi.org/10.3389/fpls.2018.01375
87. Romero, L.C., GarcHa, I. & Gotor, C. (2013). L-cysteine desulfhydrase 1 modulates the generation of the signaling molecule sulfide in plant cytosol. Plant Signal. Behav., 8 (5), pp. 4621-4634. https://doi.org/10.4161/psb.24007
88. Lisjak, M., Teklic, T., Wilson, I.D., Whiteman, M. & Hancock, J.T. (2013). Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ., 36 (9), pp. 1607-1616. https://doi.org/10.1111/pce.12073
89. Zhang, H., Hu, L.-Y., Hu, K.-D., He, Y.-D., Wang, S.-H. & Luo, J.-P. (2008). Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J. Integr. Plant Biol., 50 (12), pp. 1518-1529. https://doi.org/10.1111/j.1744-7909.2008.00769.x
90. Corpas, F.J. & Palma, J.M. (2020). H2S signaling in plants and applications inagriculture. J. Adv. Res., 24, pp. 131-137. https://doi.doi.org/10.1016/j.jare.2020.03.011 https://doi.org/10.1016/j.jare.2020.03.011
91. Altaf, M.A., Shahid, R., Ren, M.X., Mora-Poblete, F., Arnao, M.B., Naz, S., Anwar, M., Altaf, M.M., Shahid, S., Shakoor, A., Sohail, H., Ahmar, S., Kamran, M. & Chen, J.T. (2021). Phytomelatonin: An overview of the importance and mediating functions of melatonin against environmental stresses. Physiol. Plant., 172 (2), pp. 820-846. https://doi.org/10.1111/ppl.13262
92. Fan, J., Xie, Y., Zhang, Z. & Chen, L. (2018). Melatonin: A multifunctional factor in plants. Int. J. Mol. Sci., 19, art. 1528. https://doi.org/10.3390/ijms19051528
93. Wang, Y., Reiter, R.J. & Chan, Z. (2018). Phytomelatonin: a universal abiotic stress regulator. J. Exp. Bot., 69 (5), pp. 963-974. https://doi.org/10.1093/jxb/erx473
94. Yu, Y., Lv, Y., Shi, Y., Li, T., Chen, Y., Zhao, D. & Zhao, Z. (2018). The role of phyto-melatonin and related metabolites in response to stress. Molecules, 23 (8), art. 1887. https://doi.org/10.3390/molecules23081887
95. Sun, Q., Zhang, N., Wang, J., Zhang, H., Li, D., Shi, J., Li, R., Weeda, S., Zhao, B., Ren, S. & Guo, Y.D. (2015). Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. J. Exp. Bot., 66 (3), pp. 657-668. https://doi.org/10.1093/jxb/eru332
96. Arnao, M. & Hern«ndez-Ruiz, J. (2019). Melatonin and reactive oxygen and nitrogen species: a model for the plant redox network. Melatonin Res., 2 (3), pp. 152-168. https://doi.org/10.32794/11250036
97. Tan, D.-X., Manchester, L.C., Esteban-Zubero, E., Zhou, Z. & Reiter, R.J. (2015). Melatonin as a potentand inducible endogenous antioxidant: synthesis and metabolism. Molecules, 20, pp. 18886-18906. https://doi.org/10.3390/molecules201018886
98. Kolupaev, Yu.E., Taraban, D.A., Karpets, Yu.V. & Panchenko, V.G. (2022). Melatonin in plants: participation in signaling and adaptationto abiotic factors. Fiziol. rast. genet., 54, No. 5, pp. 371-386 [in Ukrainian]. https://doi.org/10.15407/frg2022.05.371
99. Jiang, X., Li, H. & Song, X. (2016). Seed priming with melatonin effects on seed germination and seedlinggrowth in maize under salinity stress. Pak. J. Bot., 48 (4), pp. 1345-1352.
100. Simlat, M., Ptak, A., Skrzypek, E., WarchoY, M., MoraXska, E., PiЩrkowska, E. (2018). Melatonin significantly influences seed germination and seedling growth of Stevia rebaudiana Bertoni. Peer J., 6, art. e5009. https://doi.org/10.7717/peerj.5009
101. Zhang, H., Liu, L., Wang, Z., Feng, G., Gao, Q. & Li, X. (2021). Induction of low temperature tolerance in wheat by pre-soaking and parental treatment with melatonin. Molecules, 26, art. 1192. https://doi.org/10.3390/molecules26041192
102. KoYodziejczyk, I., Dzitko, K., Szewczyk, R. & Posmyk, M.M. (2016). Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress. J. Plant Physiol., 193, 47-56. https://doi.org/10.1016/j.jplph.2016.01.012
103. Dawood, M.G. & El-Awadi, M.E. (2015). Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biol. Colomb., 20 (2), pp. 223-235. https://doi.org/10.15446/abc.v20n2.43291
104. Kolupaev, Y.E., Taraban, D.A., Karpets, Y.V., Makaova, B.E., Ryabchun, N.I., Dyachenko, A.I. & Dmitriev, O.P. (2023). Induction of cell protective reactions of Triticum aestivum and Secale cereale to the effect of high temperatures by melatonin. Cytol. Genet., 57 (2), 117-127 https://doi.org/10.3103/S0095452723020068
105. Choudhary, A., Kumar, A., Kaur, H., Balamurugan, A., Padhy, A.K. & Mehta, S. (2021). Plant Performance and Defensive Role of b-Amino Butyric Acid Under Environmental Stress. In: Husen, A. (eds) Plant Performance Under Environmental Stress. Springer, Cham., pp. 249-275. https://doi.org/10.1007/978-3-030-78521-5_10
106. Baccelli, I. & Mauch-Mani, B. (2016). Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones. Plant Mol. Biol., 91 (6), pp. 703-711. https://doi.org/10.1007/s11103-015-0406-y
107. Walsh, C.T., O'Brien, R.V. & Khosla,C. (2013). Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew. Chem. Int. Ed. Engl., 52 (28), pp. 7098-7124. https://doi.org/10.1002/anie.201208344
108. Kudo, F., Miyanaga, A. & Eguchi, T. (2014). Biosynthesis of natural products containing b-amino acids. Natural Product Reports, 31, pp. 1056-1107. https://doi.org/10.1039/C4NP00007B
109. Thevenet, D., Pastor, V., Baccelli, I., Balmer, A., Vallat, A., Neier, R., Glauser, G. & Mauch-Mani, B. (2017). The priming molecule -aminobutyric acid is naturally present in plants and is induced by stress. New Phytol., 213 (2), pp. 552-559. https://doi.org/10.1111/nph.14298
110. Sahoo, S., Borgohain, P., Saha, B., Moulick, D., Tanti, B. & Panda, K.S. (2019). Seed priming and seedling pre-treatment induced tolerance to drought and salt stress: Recent Advances. In: Hasanuzzaman, M., Fotopoulos V. (eds.), Priming and Pretreatment of Seeds and Seedlings,Springer Nature Singapore Pte Ltd., pp. 253-263. https://doi.org/10.1007/978-981-13-8625-1_12
111. Jakab, G., Ton, J., Flors, V., Zimmerli, L., Metraux, J.P. & Mauch-Mani, B. (2005). Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol., 139 (1), pp. 267-274. https://doi.org/10.1104/pp.105.065698
112. Jisha, K.C., Puthur, J.T. (2015). Seed priming with BABA (b-amino butyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L.) Wilczek. Protoplasma, 253 (2), 277-289. https://doi.org/10.1007/s00709-015-0804-7
113. Jisha, K.C. & Puthur, J.T. (2016). Seed Priming with beta-amino butyric acid improves abiotic stress tolerance in rice seedlings. Rice Sci., 23 (5), pp. 242-254. https://doi.org/10.1016/j.rsci.2016.08.002
114. Sita, K. & Kumar, V. (2020). Role of gamma amino butyric acid (GABA) against abiotic stress tolerance in legumes: a review. Plant Physiol. Rep., 25 (4), pp. 654-663. https://doi.org/10.1007/s40502-020-00553-1
115. Zhang, Q., He, D., Ying, S., Lu, S., Wei, J. & Li P. (2020). GABA enhances thermotolerance of seeds germination by attenuating the ros damage in Arabidopsis. Phyton-International Journal of Experimental Botany, 89 (3), pp. 619-631. https://doi.org/10.32604/phyton.2020.010379
116. Nayyar, H., Kaur, R., Kaur, S., & Singh, R. (2014). g-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants. J. Plant Growth Regul., 33, pp. 408-419. https://doi.org/10.1007/s00344-013-9389-6
117. Li, M.F., Guo, S.J., Yang, X.H., Meng, Q.W. & Wei, X.J. (2016). Exogenous gamma-aminobutyric acid increases salt tolerance of wheat by improving photosynthesis and enhancing activities of antioxidant enzymes. Biol. Plant., 60, pp. 123-131. https://doi.org/10.1007/s10535-015-0559-1
118. Sheteiwy, M.S., Shao, H., Qi, W., Hamoud, Y.A., Shaghaleh, H., Khan, N.U., Yang, R. & Tang, B. (2019). GABA-alleviated oxidative injury induced by salinity, osmotic stress and their combination by regulating cellular and molecular signals in rice. Int. J. Mol. Sci., 20 (22), art. 5709. https://doi.org/10.3390/ijms20225709
119. Tian, X.L., Wu, X.L., Li, Y. & Zhang, S.Q. (2005) The effect of gamma-aminobutyric acid in superoxide dismutase, peroxidase and catalase activity response to salt stress in maize seedling. Acta Biol. Exp. Sin., 38, pp. 75-79.
120. Zhou, M., Hassan, M.J., Peng, Y., Liu, L., Liu, W., Zhang, Y. & Li, Z. (2021). g-Aminobutyric Acid (GABA) Priming improves seed germination and seedling stress tolerance associated with enhanced antioxidant metabolism, DREB expression, and dehydrin accumulation in white clover under water stress. Front. Plant Sci., 12, art. 776939. https://doi.org/10.3389/fpls.2021.776939