Глобальні зміни клімату, які відбуваються останнім часом, ставлять перед сільськогосподарськими виробниками завдання стабільного забезпечення продовольством зростаючого населення земної кулі, а перед дослідниками — вивчення змін у видовому складі сегетальної рослинності, дослідження впливу змін клімату на культурні й бур’янові рослини та їх взаємодію. Розглянуто вплив прогнозованого підвищеного рівня СО2 в атмосфері, температури, посушливих умов на С3 і С4 бур’янові рослини, їх взаємодію з культурними рослинами, оцінено конкурентоспроможність бур’янів, можливість виживати за несприятливих умов унаслідок фізіологічної пластичності та внутрішньовидової генетичної варіабельності, вказано на потенційну небезпеку поширення інвазивних видів бур’янів. Проаналізовано наявні в літературі дані щодо впливу змін клімату на ефективність дії гербіцидів. Підсумовано, що питання впливу підвищених температур, вмісту СО2, посухи й інших змін клімату на ефективність гербіцидів, продуктивність сільськогосподарських культур, ріст, розвиток, особливості поширення та еволюцію бур’янів, взаємодію з культивованими рослинами є важливими і поки що недостатньо вивченими. Дослідження цих питань допоможе внести корективи до технологій захисту посівів з метою мінімізації впливу бур’янів на культурні рослини.
Ключові слова: зміни клімату, СО2, температура, посуха, бур’яни, гербіциди, ефективність
Повний текст та додаткові матеріали
У вільному доступі: PDFЦитована література
1. FAO (2009). How to feed the world in 2050. Retrieved from http://www.fao.org.
2. Anwar, M.P., Islam, A.K.M.M., Yeasmin, S., Rashid, M.H., Juraimi, A.S., Ahmed, S. & Shrestha, A. (2021). Weeds and their Responses to Management Efforts in a Changing Climate. Agronomy, 11, 1921, pp. 1-20. https://doi.org/10.3390/agronomy11101921
3. Boychenko, S.G. & Voloshchuk, G.M. (2004). Peculiarities of the age dynamics of carbon dioxide in the atmosphere. Naukovi pratsi UkrNDGMI, 253, pp. 72-91 [in Ukrainian].
4. Leakey, A.D.B., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P., & Ort, D. R. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany, 60 (10), pp. 2859-2876. https://doi.org/10.1093/jxb/erp096
5. Bloomberg Carbon Clock (2022). Retrieved from https://www.bloomberg.com/graphics/climate-change-data-green/carbon-clock.html.
6. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir,T.E., Chatterjee M., Ebi,K.L., Estrada Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy,A.N., MacCracken, S., Mastrandrea,P.R., White,L.L. Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
7. IPCC (Intergovernmental Panel on Climate Change) (2001). Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate, Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK, 881 p.
8. Mittler, R., Finka, A. & Goloubinoff, P. (2012). How do plants feel the heat? Trends Biochem Sci., 37, No. 3, pp. 118-125. https://doi.org/10.1016/j.tibs.2011.11.007
9. Ziska, L.H., Blumenthal, D.M. & Franks, S.J. (2019). Understanding the nexus of rising CO2, climate change, and evolution in weed biology. Invasive Plant Science and Management, 12, Iss. 2, pp. 79-88. https://doi.org/10.1017/inp.2019.12
10. How the climate is changing in Ukraine. Ministry of Environmental Protection and Natural Resources of Ukraine. March 15, 2020. Retrieved from https:// mepr.gov.ua/news/35246.html
11. National report on the state of the environment in Ukraine in 2011 (2012). Ministry of Ecology and Natural Resources of Ukraine. Kyiv: LAT [in Ukrainian].
12. Semenova, I.N. (2015). Synoptic and climatic conditions of drought formation in Ukraine (Unpublished Doctoral thesis). Odessa State Ecological University, Odessa, Ukraine [in Ukrainian].
13. Ramesh, K., Matloob, A., Aslam, F., Florentine, S.K. & Chauhan, B.S. (2017). Weeds in a Changing Climate: Vulnerabilities, Consequences, and Implications for Future Weed Management Frontiers in Plant Science, 8, pp. 1-12. https://doi.org/10.3389/fpls.2017.00095
14. Peters, K., Breitsameter, L. & Gerowitt, B. (2014). Impact of climate change on weeds in agriculture: a review. Agron. Sustain. Dev., 34, pp. 707-721. https://doi.org/10.1007/s13593-014-0245-2
15. Bloomfield, J.P., Williams, R.J., Gooddy, D.C., Cape, J.N. & Guha, P. (2006). Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater - a UK perspective. Science of the Total Environment, 369 (1-3), pp. 163-177. https://doi.org/10.1016/j.scitotenv.2006.05.019
16. Walck, J.L., Hidayati, S.N., Dixon, K.W., Thompson, K. & Poschlod, P. (2011). Climate change and plant regeneration from seed. Global Change Biol., 17, pp. 2145-2161. https://doi.org/10.1111/j.1365-2486.2010.02368.x
17. Hanzlik, K. & Gerowitt B. (2012). Occurrence and distribution of important weed species in German winter oilseed rape fields. J. Plant Dis. Prot., 119, pp. 107-120. https://doi.org/10.1007/BF03356429
18. Morderer, Ye.Yu. (2012). Weeds in crops. In: Strategy and tactics of plant protection. V. 1. Strategy/V.P. Fedorenko ed. Kyiv: Alfa-stevia, pp. 215-242 [in Ukrainian].
19. Morderer, Ye.Yu., Guralchuk, Zh.Z. & Morgun V.V. (2018). The problem of controlling segetal vegetation in agrophytocenoses in the context of biodiversity conservation. Ukr. bot. J., 75, No. 6, pp. 552-563. https://doi.org/10.15407/ukrbotj75.06.552
20. Ivashchenko, O.O. & Ivashchenko, O.O. (2019). General herbology. Kyiv: Fenix. https://doi.org/10.36495/ISBN978-966-136-649-6/2019.752s
21. Chandrasena, N. (2009). How will weed management change under climate change? Some perspectives. J. Crop Weed, 5, pp. 95-105.
22. Sharma, G., Barney, J.N., Westwood, J.H. & Haak, D.C. (2021). Into the weeds: new insights in plant stress. Trends in Plant Science, 26, No. 10, pp. 1050-1060. https://doi.org/10.1016/j.tplants.2021.06.003
23. Gray, S.B., & Brady, S.M. (2016). Plant developmental responses to climate change. Developmental Biology, 419, No. 1, pp. 64-77. https://doi.org/10.1016/j.ydbio.2016.07.023
24. Boese, S.R., Wolfe, D.W. & Melkonian, J. (1997). Elevated CO2 mitigates chilling-induced water stress and photosynthetic reduction during chilling. Plant Cell Environ., 20, pp. 625-632. https://doi.org/10.1111/j.1365-3040.1997.00082.x
25. McDonald, A., Riha, S., DiTommaso, A. & DeGaetano, A. (2009). Climate change and the geography of weed damage: Analysis of U.S. maize systems suggests the potential for significant range transformations. Agriculture, Ecosystems & Environment. 130, No. 3-4, pp. 131-140. https://doi.org/10.1016/j.agee.2008.12.007
26. Ziska, L.H. & Dukes, J.S. (2011). Weed Biology and Climate Change. Blackwell Publishing Ltd.: Hoboken, NJ, USA. https://doi.org/10.1002/9780470958674
27. Bunce, J.A. (2001). Weeds in a changing climate. In: Proceedings of the World's Worst Weeds - Proceedings of an International Symposium, Brighton, UK, 12 November 2001, pp. 109-118. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20023001912
28. Nguyen, T., Bajwa, A.A., Navie, S., O'Donnell, C. & Adkins, S. (2017). Parthenium weed (Parthenium hysterophorus L.) and climate change: the effect of CO2 concentration, temperature, and water deficit on growth and reproduction of two biotypes. Environ. Sci. Pollut. Res. Int., 24, No. 11, pp. 10727-10739. https://doi.org/10.1007/s11356-017-8737-7
29. Bashar, H.M.K., Juraimi, A.S., Ahmad-Hamdani, M.S., Uddin, M.K., Asib, N., Anwar, M.P. & Rahaman, F. (2021). A Mystic Weed, Parthenium hysterophorus: Threats, Potentials and Management. Agronomy, 11, 1514. https://doi.org/10.3390/agronomy11081514
30. Chadha, A., Florentine, S., Javaid, M., Welgama, A. & Turville, C. (2020). Influence of elements of climate change on the growth and fecundity of Datura stramonium. Environ. Sci. Pollut. Res., 27 (28), pp. 35859-35869. https://doi.org/10.1007/s11356-020-10251-y
31. Clements, D.R. & Jones, V.L. (2021). Rapid Evolution of Invasive Weeds Under Climate Change: Present Evidence and Future Research Needs. Front. Agron. 3:664034. https://doi.org/10.3389/fagro.2021.664034
32. Sun, Y., Kaleibar, B.P., Oveisi, M. & Muller-Scharer, H. (2021). Addressing Climate Change: What Can Plant Invasion Science and Weed Science Learn From Each Other? Front. Agron. 2:626005. https://doi.org/10.3389/fagro.2020.626005
33. Pysek, P., Hulme, P.E., Simberloff, D., Bacher, S., Blackburn, T.M., Carlton, J.T., Dawson, W., Essl, F., Foxcroft, L.C., Genovesi, P., Jeschke, J.M., Kuhn, I., Liebhold, A.M., Mandrak, N.E., Meyerson, L.A., Pauchard, A., Pergl, J., Roy, H.E., Seebens, H., van Kleunen, M., Vila, M., Wingfield, M.J. & Richardson, D.M. (2020). Scientists' warning on invasive alien species. Biol. Rev. Camb. Philos. Soc. 95 (6): 1511-1534. https://doi.org/10.1111/brv.12627
34. Pautasso, M., Dehnen-Schmutz, K., Holdenrieder, O., Pietravalle, S., Salama, N., Jeger, M.J., Lange, E. & Hehl-Lange, S. (2010). Plant health and global change-some implications for landscape management. Biol. Rev., 85, pp. 729-755. https://doi.org/10.1111/j.1469-185X.2010.00123.x
35. Protopopova, V.V., Mosyakin, S.L. & Shevera, M.V. (2002). Phytoinvasions in Ukraine as a threat to biodiversity: current state and challenges for the future. Kyiv [in Ukrainian].
36. Bulleri, F., Eriksson, B.K., Queirys, A., Airoldi, L., Arenas, F., Arvanitidis, C., Bouma, T.J., Crowe, T.P., Davoult, D., Guizien, K., Ivesa, L., Jenkins, S.R., Michalet, R., Olabarria, C., Procaccini, G., Serrгo, E.A., Wahl, M. & Benedetti-Cecchi, L. (2018). Harnessing positive species interactions as a tool against climate-driven loss of coastal biodiversity. PLoS Biol. 16(9): e2006852. https://doi.org/10.1371/journal.pbio.2006852
37. Oostra, V., Saastamoinen, M., Zwaan, B.J. & Wheat, C.W. (2018). Strong phenotypic plasticity limits potential for evolutionary responses to climate change. Nature Communications, 9 (1). https://doi.org/10.1038/s41467-018-03384-9
38. Pazzaglia, J., Reusch, T. B. H., Terlizzi, A., Marin Guirao, L. & Procaccini, G. (2021). Phenotypic plasticity under rapid global changes: The intrinsic force for future seagrasses survival. Evolutionary Applications, 14, No. 5, pp. 1181-1201. https://doi.org/10.1111/eva.13212
39. Singh, R.P., Singh, R.K. & Singh, M.K. (2011). Impact of climate and carbon dioxide change on weeds and their management - a review. Indian J. Weed Sci., 43, pp. 1-11.
40. Ziska, L.H. (2021). Crop Adaptation: Weedy and Crop Wild Relatives as an Untapped Resource to Utilize Recent Increases in Atmospheric CO2. Plants, 10, 88. https://doi.org/10.3390/plants10010088
41. Fleming, A. & Vanclay, F. (2010). Farmer responses to climate change and sustainable agriculture. A review. Agronomy for sustainable development. 30 (1), pp. 11-19. https://doi.org/10.1051/agro/2009028
42. Ziska, L.H. (2001). Changes in competitive ability between a C4 crop and a C3 weed with elevated carbon dioxide. Weed Sci., 49 (5), pp. 622-627. https://doi.org/10.1614/0043-1745(2001)049[0622:CICABA]2.0.CO;2
43. Ziska, L.H. (2003). Evaluation of yield loss in field sorghum from a C3 and C4 weed with increasing CO2. Weed Sci., 51 (6), pp. 914-918. https://doi.org/10.1614/WS-03-002R
44. Manisankar, G. & Ramesh, T. (2019). Response of weeds under elevated CO2 and temperature: a review. J. Pharmacogn. Phytochem., SP2, pp. 427-431.
45. Stasyk, O.O. & Kiriziy, D.A. (2011). Regulatory relationships and limiting factors in the photosynthesis-production process system and prospects for their optimization. Fiziol. i biokchim. cult. rast., 43, No. 3, pp. 226-238 [in Ukrainian].
46. Gulyaev, B.I. (1986). Influence of CO2 concentration on photosynthesis, growth and productivity of plants. Fiziol. i biokchim. cult. rast., 18, No. 3, pp. 574-591 [in Russian].
47. Kim, S.-H., Sicher, R. C., Bae, H., Gitz, D. C., Baker T., Timlin J. & Reddy, V. R. (2006). Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Global Change Biology, 12 (3), pp. 588-600. https://doi.org/10.1111/j.1365-2486.2006.01110.x
48. Idso, C.D., Carter, R.M. & Singer, S.F. (2011). Climate change reconsidered: interim report of the nongovernmental panel on climate change (NIPCC), Chicago, IL: The Heartland Institute.
49. Xu, M. (2015). The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum). Journal of Plant Physiology, 184, pp. 89-97. https://doi.org/10.1016/j.jplph.2015.07.003
50. Zheng, Y., Li, F., Hao, L., Shedayi, A. A., Guo, L., Ma, C., Huang B. & Xu, M. (2018). The optimal CO2 concentrations for the growth of three perennial grass species. BMC Plant Biology, 18 (1). https://doi.org/10.1186/s12870-018-1243-3
51. Zheng, Y., Li, F., Hao, L., Yu, J., Guo, L., Zhou, H., Ma Ch., Chang X. & Xu, M. (2019). Elevated CO2 concentration induces photosynthetic down-regulation with changes in leaf structure, non-structural carbohydrates and nitrogen content of soybean. BMC Plant Biology, 19 (1), 255. https://doi.org/10.1186/s12870-019-1788-9
52. Saha, S., Das, B., Chatterjee, D., Sehgal, V.K., Chakraborty, D. & Pal, M. (2020). Crop Growth Responses Towards Elevated Atmospheric CO2. In: Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I. General Consequences and Plant Responses/Hasanuzzaman M. ed. Chapter 6. Springer, pp. 147-198. https://doi.org/10.1007/978-981-15-2156-0_6
53. Netis, I.T., Onufran, L.I. & Netis, V.I. (2021). The reaction of plants to the growth of CO2 concentration in the atmosphere. Tavr. Nauk. Visnyk, No. 120, pp. 118-124. https://doi.org/10.32851/2226-0099.2021.120.16
54. Javaid, M., Florentine, S.K., Ashraf, M., Mahmood, A., Sattar, A., Wasaya, A. & Li F.M. (2022). Photosynthetic activity and water use efficiency of Salvia verbenaca L. under elevated CO2 and water-deficit conditions. Journal of Agronomy and Crop Science, 208, No. 4, pp. 536-551. https://doi.org/10.1111/jac.12613
55. Wang, Zh., Wang, Ch. & Liu, Sh. (2022). Elevated CO2 alleviates adverse effects of drought on plant water relations and photosynthesis: a global meta-analysis. Journal of Ecology. https://doi.org/10.1111/1365-2745.13988
56. Ziska, L. H. (2000). The impact of elevated CO2 on yield loss from a C3 and C4 weed in field-grown soybean. Global Change Biology, 6(8), pp. 899-905. https://doi.org/10.1046/j.1365-2486.2000.00364.x
57. Korres, N.E., Burgos, N.R., Travlos, I., Vurro, M., Gitsopoulos, T.K., Varanasi, V.K., Duke, S.O., Kudsk, P., Brabham, Ch., Rouse, Ch.E. & Salas-Perez, R. (2019). New directions for integrated weed management: Modern technologies, tools and knowledge discovery. Advances in Agronomy. https://doi.org/10.1016/bs.agron.2019.01.006
58. Balbinot, A., Feijy, A.R., Fipke, M.V., Gehrke, V. R., Agostinetto, D., Kruse, N.D., Ziska, L.H., Camargo, E.R. & de Avila, L.A. (2022). Rising atmospheric CO2 concentration affect weedy rice growth, seed shattering and seedbank longevity. Weed Research, 62, No. 4, pp. 277-286. https:/doi.org/10.1111/wre.12536 https://doi.org/10.1111/wre.12536
59. Patterson, D.T. (1995). Weeds in a changing climate. Weed Sci. 43, pp. 685-701. https://doi.org/10.1017/S0043174500081832
60. Ziska, L.H. & Bunce, J.A. (2007). Predicting the impact of changing CO2 on crop yields: some thoughts on food. New Phytol., 175 (4), pp. 607-618. https://doi.org/10.1111/j.1469-8137.2007.02180.x
61. Hatfield, J.L., Boote, K.J., Kimball, B.A., Ziska, L.H., Izaurralde, R.C., Ort, D., Thomson A.M. & Wolfe, D. (2011). Climate Impacts on Agriculture: Implications for Crop Production. Agronomy Journal, 103 (2), 351. https://doi.org/10.2134/agronj2010.0303
62. Tubiello, F.N., Soussana, J.F. & Howden, S.M. (2007). Crop and pasture response to climate change. Proc. Natl. Acad. Sci. USA, 104, pp. 19686-19690. https://doi.org/10.1073/pnas.0701728104
63. Jagadish, K.S., Cairns, J.E., Kumar, A., Somayanda, I.M. & Craufurd, P.Q. (2011). Does susceptibility to heat stress confound screening for drought tolerance in rice? Funct. Plant Biology, 38, pp. 261-269. https://doi.org/10.1071/FP10224
64. Ziska, L. H., Blumenthal, D. M., Runion, G. B., Hunt, E. R. & Diaz-Soltero, H. (2010). Invasive species and climate change: an agronomic perspective. Climatic Change, 105 (1-2), pp. 13-42. https://doi.org/10.1007/s10584-010-9879-5
65. Manea, A., Leishman, M.R. & Downey, P.O. (2011). Exotic C4 grasses have increased tolerance to glyphosate under elevated carbon dioxide. Weed Sci., 59, pp. 28-36. https://doi.org/10.1614/WS-D-10-00080.1
66. Guo, P. & Al-Khatib, K. (2003). Temperature effects on germination and growth of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis). Weed Sci., 51, pp. 869-875. https://doi.org/10.1614/P2002-127
67. Nowak, R.S., Ellsworth, D.S. & Smith, S.D. (2004). Functional responses of plants to elevated atmospheric CO2: do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol., 162, pp. 253-280. https://doi.org/10.1111/j.1469-8137.2004.01033.x
68. Ainsworth, E.A. & Long, S.P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol., 165, pp. 351-372. https://doi.org/10.1111/j.1469-8137.2004.01224.x
69. Ziska, L.H. & Teasdale, J.R. (2000). Sustained growth and increased tolerance to glyphosate observed in a C3 perennial weed, quackgrass (Elytrigia repens), grown at elevated carbon dioxide. Australian Journal of Plant Physiology, 27, pp. 159-166 https://doi.org/10.1071/PP99099
70. Malarkodi, N., Manikandan, N. & Ramaraj, A.P. (2017). Impact of climate change on Weeds and Weed management. J. Innov. Agric., 4, pp. 1-6.
71. Ziska, L. H., Faulkner, S. & Lydon, J. (2004). Changes in biomass and root:shoot ratio of field-grown Canada thistle (Cirsium arvense), a noxious, invasive weed, with elevated CO2: implications for control with glyphosate. Weed Sci., 52 (4), pp. 584-588. https://doi.org/10.1614/WS-03-161R
72. Ziska, L.H., Teasdale, J.R. & Bunce, J.A. 1999. Future atmospheric carbon dioxide may increase tolerance to glyphosate. Weed Sci., 47, pp. 608-615 https://doi.org/10.1017/S0043174500092341
73. Varanasi, A., Prasad, P.V.V. & Jugulam, M. (2015). Impact of climate change factors on weeds and herbicide efficacy. Advances in Agronomy, 135, pp. 107-146. https://doi.org/10.1016/bs.agron.2015.09.002
74. Archambault, D.J., Li, X., Robinson, D., O'Donovan, J.R. & Klein, K.K. (2001). The effects of elevated CO2 and temperature on herbicide efficacy and weed/crop competition. Report to the Prairie Adaptation Res. Coll., No. 29, pp. 1-29.
75. Jabran, K. & Dogan, M.N. (2018). High carbon dioxide concentration and elevated temperature impact the growth of weeds but do not change the efficacy of glyphosate. Pest Management Science, 74, No. 3, pp. 766-771. https://doi.org/10.1002/ps.4788
76. Sammons, R.D. & Gaines, T.A. (2014). Glyphosate resistance: state of knowledge. Pest Management Science, 70, pp. 1367-1377. https://doi.org/10.1002/ps.3743
77. Matzrafi, M., Brunharo, C., Tehranchian, P., Hanson, B.D. & Jasieniuk, M. (2019). Increased temperatures and elevated CO2 levels reduce the sensitivity of Conyza canadensis and Chenopodium album to glyphosate. Sci Rep., 9, 2228 https://doi.org/10.1038/s41598-019-38729-x
78. Waryszak, P., Lenz, T.I., Leishman, M.R. & Downey, P.O. (2018). Herbicide effectiveness in controlling invasive plants under elevated CO2: sufficient evidence to rethink weeds management. Journal of environmental management, 226, pp. 400-407. https://doi.org/10.1016/j.jenvman.2018.08.050
79. Ziska, L.H., Gealy, D.R., Tomecek, M.B., Jackson, A.K. & Black, H.L. (2012). Recent and projected increases in atmospheric CO2 concentration can enhance gene flow between wild and genetically altered rice (Oryza sativa). PLoS ONE, 7, e37522. https://doi.org/10.1371/journal.pone.0037522
80. Madafiglio, G.P., Medd, R.W., Cornish, P.S. & Van de Ven, R. (2000). Temperature-mediated responses of flumetsulam and metosulam on Raphanus raphanistrum. Weed Res., 40, pp. 387-395. https://doi.org/10.1046/j.1365-3180.2000.00200.x
81. Medd, R.W., Van de Ven, R., Pickering, D.I. & Nordblom, T. (2001). Determination of environment specific dose response relationships for clodinafop-propargyl on Avena spp. Weed Res., 41, pp. 351-368. https://doi.org/10.1046/j.1365-3180.2001.00243.x
82. Bailey, S.W. (2004). Climate change and decreasing herbicide persistence. Pest Management Science, 60 (2), pp. 158-162. https://doi.org/10.1002/ps.785
83. Amare, T. (2016). Review on impact of climate change on weed and their management. J. Agric. Biol. Environ., Stat. 2, Iss. 3, pp. 21-27. https://doi.org/10.11648/j.ajbes.20160203.12
84. Howden, S.M., Soussana, J.F., Tubiello, F.N., Chhetri, N., Dunlop, M. & Meinke, H. (2007). Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA, 104, pp. 19691-19696. https://doi.org/10.1073/pnas.0701890104
85. Patterson, D.T., Westbrook, J.K., Joyce, R.J.V., Lingren, P.D. & Rogasik, J. (1999). Weeds, insects and diseases. Clim. Change, 43, pp. 711-727. https://doi.org/10.1023/A:1005549400875
86. Johnson, B.C. & Young, B.G. (2002). Influence of temperature and relative humidity on the foliar activity of mesotrione. Weed Sci., 50, No. 2, pp. 157-161. https://doi.org/10.1614/0043-1745(2002)050[0157:IOTARH]2.0.CO;2
87. Tendai Mucheri (2016). The efficacy of glufocinate ammonium on ryegrass as influenced by different plant growth stages and different temperatures. Thesis presented in partial fulfilment of the requirements for the degree Master of Science in Agriculture (Agronomy) at Stellenbosch University. Stellenbosch University. 117 p.
88. Olson, B.L. S., Al-Khatib, K., Stahlman, P. & Isakson, P.J. (2000). Efficacy and metabolism of MON 37500 in Triticum aestivum and weedy grass species as affected by temperature and soil moisture. Weed Sci., 48 (5), pp. 541-548. https://doi.org/10.1614/0043-1745(2000)048[0541:EAMOMI]2.0.CO;2
89. Matzrafi, M., Seiwert, B., Reemtsma, T., Rubin, B. & Peleg, Z. (2016). Climate change increases the risk of herbicide-resistant weeds due to enhanced detoxification. Planta, 244, No. 6, pp. 1217-1227. https://doi.org/10.1007/s00425-016-2577-4
90. Godar, A.S., Varanasi, V.K., Nakka, S., Prasad, P.V., Thompson, C.R. & Mithila, J. (2015). Physiological and molecular mechanisms of differential sensitivity of palmer amaranth (Amaranthus palmeri) to mesotrione at varying growth temperatures. PLoS ONE, 10, e0126731-e0126731. https://doi.org/10.1371/journal.pone.0126731
91. Yu, Q., Cairns, A. & Powles, S.B. (2004). Paraquat resistance in a population of Lolium rigidum. Funct Plant Biol, 31, No. 3, pp. 247-254. https://doi.org/10.1071/FP03234
92. Ge, X., d'Avignon, D.A., Ackerman, J.J., Duncan, B., Spaur, M.B. & Sammons, R.D. (2011). Glyphosate-resistant horseweed made sensitive to glyphosate: low-temperature suppression of glyphosate vacuolar sequestration revealed by 31P NMR. Pest Management Science, 67, No. 10, pp. 1215-1221. https://doi.org/10.1002/ps.2169
93. Shyam, Ch., Jhala, A.J., Kruger, G. & Jugulam, M. (2019). Rapid metabolism increases the level of 2,4-D resistance at high temperature in common waterhemp (Amaranthus tuberculatus). Agronomy & Horticulture - Faculty Publications. 1303. https://digitalcommons.unl.edu/agronomyfacpub/130 https://doi.org/10.1038/s41598-019-53164-8
94. Refatti, J.P., de Avila, L. A., Camargo, E.R., Ziska, L.H., Oliveira, C., Salas-Perez, R., Rouse, Ch.E. & Roma-Burgos, N. (2019). High [CO2] and Temperature Increase Resistance to Cyhalofop-Butyl in Multiple-Resistant Echinochloa colona. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00529
95. Zhou, J., Tao, B., Messersmith, C.G. & Nalewaja, J.D. (2007). Glyphosate efficacy on velvetleaf (Abutilon theophrasti) is affected by stress. Weed Sci., 55, pp. 240-244. https://doi.org/10.1614/WS-06-173.1
96. Mollaee, M., Mobli, A. & Chauhan, B.S. (2020). The response of glyphosate-resistant and glyphosate-susceptible biotypes of Echinochloa colona to carbon dioxide, soil moisture and glyphosate. Sci. Rep., 10, 329. https://doi.org/10.1038/s41598-019-57307-9
97. Coetzer, E., Al-Khatib, K. & Loughin, T. M. (2001). Glufosinate efficacy, absorption, and translocation in amaranth as affected by relative humidity and temperature. Weed Sci., 49, No. 1, pp. 8-13. https://doi.org/10.1614/0043-1745(2001)049[0008:GEAATI]2.0.CO;2
98. Kieloch, R., Sadowski, J. & Domaradzki, K. (2014). Influence of selected soil-climatic parameters and application method of tribenuron methyl on biomass productivity and amino acids content in weeds. J. Plant Dis. Prot., 121, pp. 26-31. https://doi.org/10.1007/BF03356487
99. Stopps, G.J., Nurse, R.E. & Sikkema, P.H. (2013). The Effect of Time of Day on the Activity of Postemergence Soybean Herbicides. Weed Technology, 27, No. 4, pp. 690-695. https://doi.org/10.1614/WT-D-13-00035.1
100. Stewart, C.L., Nurse, R.E., & Sikkema, P.H. (2009). Time of Day Impacts Postemergence Weed Control in Corn. Weed Technology, 23, No. 3, pp. 346-355. https://doi.org/10.1614/WT-08-150.1
101. Langdon, N.M., Soltani, N., Raedar, A. J., Hooker, D.C., Robinson, D.E. & Sikkema, P.H. (2020). Time-of-day effect on weed control efficacy with tolpyralate plus atrazine. Weed Technology, 35, No. 1, pp. 149-154. https://doi.org/10.1017/wet.2020.93
102. Stewart, C.L., Nurse, R.E., Hamill, A.S. & Sikkema, P.H. (2010). Environment and Soil Conditions Influence Pre - and Postemergence Herbicide Efficacy in Soybean. Weed Technology, 24, No. 3, pp. 234-243. https://doi.org/10.1614/WT-09-009.1
103. Mohammad, V.H., Osborne, C.P. & Freckleton, R.P. (2022). Drought exposure leads to rapid acquisition and inheritance of herbicide resistance in the weed Alopecurus myosuroides. Ecol. Evol., 12(2): e8563. https://doi.org/10.1002/ece3.8563
104. Storchous, I. (2013). Effective protection of winter wheat crops from monocotyledonous weeds. Agro-business today. April 29, 2013. Retrieved from http://agro-business.com.ua/agro/ahronomiia-sohodni/item/318-efektyvnyi-zakhyst-posiviv-ozymoi-pshenytsi-vid-odnosimiadolynykh-burianiv.html [in Ukrainian].
105. Rossi, F.S., Tomaso, J.M. & Neal, J.C. (1993). Fate of fenoxaprop-ethyl applied to moisture-stressed smooth crabgrass (Digitaria ischaemum L.). Weed Sci., 41, pp. 335-340. https://doi.org/10.1017/S0043174500052024
106. Boydston, R.A. (1992). Drought stress reduces fluazifop-P activity on green foxtail. Weed Sci, 40, pp. 20-24. https://doi.org/10.1017/S0043174500056885
107. Radchenko, M., Sychuk, A. & Morderer, Ye. (2014). Decrease of the herbicide fenoxaprop phytotoxicity in the drought condition: the role of antioxidant enzymatic system. Journal of Plant Protection Research, 54, No 4, pp. 390-394. https://doi.org/10.2478/jppr-2014-0058
108. Morderer, Ye.Yu., Guralchuk, Zh.Z., Rodzevych, O.P. & Novak, L. (2020). The efficiency of adjuvant AGNS 1056-X joint application with herbicides aryloxyphenoxy propionic acid derivatives. Fiziol. rast. genet., 52, No. 3, pp. 224-237. https://doi.org/10.15407/frg2020.03.224
109. Radchenko, M.P., Ponomareva, I.G, Pozynych, I.S. & Morderer, Ye.Yu. (2021). Stress and use of herbicides in field crops. Agriculture Science and Practice, 8, No 3, pp. 50-70. https://doi.org/10.15407/agrisp8.03.050
110. Dayan, F.E. (2019). Current Status and Future Prospects in Herbicide Discovery. Plants, 8 (9), 341. https://doi.org/10.3390/plants8090341
111. Shaner, D.L. & Beckie, H.J. (2014). The future for weed control and technology. Pest Management Science, 70 (9), pp. 1329-1339. https://doi.org/10.1002/ps.3706
112. Westwood, J.H., Charudattan, R., Duke, S.O., Fennimore, S.A., Marrone, P., Slaughter, D.C., Swanton, C. & Zollinger, R. (2018). Weed Management in 2050: Perspectives on the Future of Weed Science. Weed Sci., 66 (3), pp. 275-285. https://doi.org/10.1017/wsc.2017.78
113. Morin, L. (2020). Progress in Biological Control of Weeds with Plant Pathogens. Annual Review of Phytopathology, 58 (1). https://doi.org/10.1146/annurev-phyto-010820-012823
114. Jabran, K., Florentine, S. & Chauhan, B.S. (2020). Impacts of Climate Change on Weeds, Insect Pests, Plant Diseases and Crop Yields: Synthesis. Crop Protection Under Changing Climate, pp. 189-195. https://doi.org/10.1007/978-3-030-46111-9_8
115. Ziska, L.H. (2020). Climate Change and the Herbicide Paradigm: Visiting the Future. Agronomy, 10 (12), 1953. https://doi.org/10.3390/agronomy10121953