Основними способами отримання a-токоферолу (a-T) є хімічний синтез та екстракція a-T з рослинних олій. Широко використовувана синтетична форма під назвою all-rac-a-токоферол складається із суміші восьми стереоізомерів, при цьому частина природного стереоізомеру RRR-a-токоферолу становить усього 12,5 %. Природний a-Т в 1,5 раза активніший за синтетичні форми, тому пошук ефективних джерел природного a-Т триває. Рослинні олії з насіння соняшника, кукурудзи, ріпаку та сої є основними джерелами натурального комерційного вітаміну Е з низькою активністю через низький вміст a-Т. В багатьох дослідженнях показано зростання накопичення a-T у клітинах рослин за зміни умов культивування: інтенсивності світла, фотоперіоду, рівня азоту, температури, типу вуглецевого живлення тощо. Стресові умови стимулюють накопичення антиоксидантів у фотосинтезуючих організмах, але можуть обмежувати нормальну швидкість їх росту. Генна інженерія дає змогу створювати рослини з високим вмістом a-Т введенням кодувальних послідовностей (CDS) значущих генів шляху синтезу токохроманолу в ядерний геном трансгенних рослин. CDS кДНК ключових ферментів синтезу a-Т, таких як гомогентизатгеранілгеранілтрансфераза (HGGT), токоферолциклаза (TC), g-токоферолметилтрансфераза (g-MTM) з рису, сої, кукурудзи, моркви тощо, використовують для збільшення загального вмісту токохроманолів. Комбінуванням біотехнологічних методів, генної інженерії та добором умов культивування можна значно стимулювати накопичення a-Т у фотосинтезуючих організмах.
Ключові слова: a-токоферол, вітамін Е, токохроманол, біотехнологія, трансгенні рослини
Повний текст та додаткові матеріали
У вільному доступі: PDFЦитована література
1. Valentin, H.E. & Qi, Q. (2005). Biotechnological production and application of vitamin E: current state and prospects. Appl. Microbiol. Biotechnol., 68 (4), pp. 436-444. https://doi.org/10.1007/s00253-005-0017-7
2. Mokrosnop, V.M. & Zolotareva, O.K. (2021). Conditions for the accumulation of a-tocopherol in microalgae cells. Microbiol. and Biotechnol., 2 (52), pp. 6-26. https://doi.org/10.18524/2307-4663.2021.2(52).223991
3. Van Eenennaam, A.L., Lincoln, K., Durrett, T.P., Valentin, H.E., Shewmaker, C.K., Thorne, G.M. & Last, R.L. (2003). Engineering vitamin E content: from Arabidopsis mutant to soy oil. The Plant Cell, 15 (12), pp. 3007-3019. https://doi.org/10.1105/tpc.015875
4. Wang, X.Q., Yoon, M.Y., He, Q., Kim, T.S., Tong, W., Choi, B.W., Lee, Y.-S. & Park, Y.J. (2015). Natural variations in OsgTMT contribute to diversity of the a-tocopherol content in rice. Molecular Genetics and Genomics, 290 (6), pp. 2121-2135. https://doi.org/10.1007/s00438-015-1059-x
5. Rocheford, T.R., Wong, J.C., Egesel, C.O. & Lambert, R.J. (2002). Enhancement of vitamin E levels in corn. J. of the American College of Nutrition, 21 (sup3), pp. 191S-198S. https://doi.org/10.1080/07315724.2002.10719265
6. Rippert, P., Scimemi, C., Dubald, M. & Matringe, M. (2004). Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol., 134 (1), pp. 92-100. https://doi.org/10.1104/pp.103.032441
7. Yuan, P., Cui, S., Liu, Y., Li, J., Du, G. & Liu, L. (2020). Metabolic engineering for the production of fat-soluble vitamins: advances and perspectives. Appl. Microbiol. Biotechnol., 104 (3), pp. 935-51. https://doi.org/10.1007/s00253-019-10157-x
8. Li, Y., Wang, Z., Sun, X. & Tang, K. (2008). Current opinions on the functions of tocopherol based on the genetic manipulation of tocopherol biosynthesis in plants. J. of Integrative Plant Biol., 50 (9), pp. 1057-1069. https://doi.org/10.1111/j.1744-7909.2008.00689.x
9. Almeida, J., Quadrana, L., Asis, R., Setta, N., de Godoy, F., Bermudez, L. & Rossi, M. (2011). Genetic dissection of vitamin E biosynthesis in tomato. J. of Exp. Bot., 62 (11), pp. 3781-3798. https://doi.org/10.1093/jxb/err055
10. Fritsche, S., Wang, X. & Jung, C. (2017). Recent advances in our understanding of tocopherol biosynthesis in plants: an overview of key genes, functions, and breeding of vitamin E improved crops. Antioxidants, 6 (4), p. 99. https://doi.org/10.3390/antiox6040099
11. Falk, J., Andersen, G., Kernebeck, B. & Krupinska, K. (2003). Constitutive overexpression of barley 4-hydroxyphenylpyruvate dioxygenase in tobacco results in elevation of the vitamin E content in seeds but not in leaves. FEBS Letters, 540 (1-3), pp. 35-40. https://doi.org/10.1016/S0014-5793(03)00166-2
12. Seo, Y.S., Kim, S.J., Harn, C.H. & Kim, W.T. (2011). Ectopic expression of apple fruit homogentisate phytyltransferase gene (MdHPT1) increases tocopherol in transgenic tomato (Solanum lycopersicum cv. Micro-Tom) leaves and fruits. Phytochemistry, 72 (4-5), pp. 321-329. https://doi.org/10.1016/j.phytochem.2010.12.013
13. Tavva, V.S., Kim, Y.H., Kagan, I.A., Dinkins, R.D., Kim, K.N. & Collins, G.B. (2007). Increased a-tocopherol content in soybean seed overexpressing the Perilla frutescens g-tocopherol methyltransferase gene. Plant Cell Reports, 26 (1), pp. 61-70. https://doi.org/10.1007/s00299-006-0218-2
14. Tsegaye, Y., Shintani, D.K. & DellaPenna, D. (2002). Overexpression of the enzyme p-hydroxyphenolpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis. Plant Physiol. Biochem., 40 (11), pp. 913-920. https://doi.org/10.1016/S0981-9428(02)01461-4
15. Collakova, E. & DellaPenna, D. (2003). The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiol., 133 (2), pp. 930-940. https://doi.org/10.1104/pp.103.026138
16. Karunanandaa, B., Qi, Q., Hao, M., Baszis, S.R., Jensen, P.K., Wong, Y. H.H. & Valentin, H.E. (2005). Metabolically engineered oilseed crops with enhanced seed tocopherol. Metabolic Engineering, 7 (5-6), pp. 384-400. https://doi.org/10.1016/j.ymben.2005.05.005
17. DellaPenna, D. & Pogson, B.J. (2006). Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol., 57, pp. 711-738. https://doi.org/10.1146/annurev.arplant.56.032604.144301
18. Harish, M.C., Dachinamoorthy, P., Balamurugan, S., Murugan, S.B. & Sathishkumar, R. (2013). Enhancement of a-tocopherol content through transgenic and cell suspension culture systems in tobacco. Acta Physiol. Plant., 35 (4), pp. 1121-1130. https://doi.org/10.1007/s11738-012-1149-x
19. Kim, S.E., Lee, C.J., Ji, C.Y., Kim, H.S., Park, S.U., Lim, Y.H. & Kwak, S.S. (2019). Transgenic sweetpotato plants overexpressing tocopherol cyclase display enhanced a-tocopherol content and abiotic stress tolerance. Plant Physiol. Biochem., 144, pp. 436-444. https://doi.org/10.1016/j.plaphy.2019.09.046
20. Li, Y., Zhou, Y., Wang, Z., Sun, X. & Tang, K. (2010). Engineering tocopherol biosynthetic pathway in Arabidopsis leaves and its effect on antioxidant metabolism. Plant Sci., 178 (3), pp. 312-220. https://doi.org/10.1016/j.plantsci.2010.01.004
21. Ma, J., Qiu, D., Pang, Y., Gao, H., Wang, X. & Qin, Y. (2020). Diverse roles of tocopherols in response to abiotic and biotic stresses and strategies for genetic biofortification in plants. Mol. Breed., 40 (2), pp. 1-15. https://doi.org/10.1007/s11032-019-1097-x
22. Shintani, D. & DellaPenna, D. (1998). Elevating the vitamin E content of plants through metabolic engineering. Science, 282 (5396), pp. 2098-2100. https://doi.org/10.1126/science.282.5396.2098
23. Lee, B.K., Kim, S.L., Kim, K.H., Yu, S.H., Lee, S.C., Zhang, Z. & Lee, J.Y. (2008). Seed specific expression of perilla g-tocopherol methyltransferase gene increases a-tocopherol content in transgenic perilla (Perilla frutescens). Plant Cell, Tissue and Organ Culture, 92 (1), pp. 47-54. https://doi.org/10.1007/s11240-007-9301-9
24. Zhang, L., Luo, Y., Liu, B., Zhang, L., Zhang, W., Chen, R. & Wang, L. (2020). Overexpression of the maize g-tocopherol methyltransferase gene (ZmTMT) increases a-tocopherol content in transgenic Arabidopsis and maize seeds. Transgen. Res., 29 (1), pp. 95-104. https://doi.org/10.1007/s11248-019-00180-z
25. Wang, H., Xu, S., Fan, Y., Liu, N., Zhan, W., Liu, H. & Yan, J. (2018). Beyond pathways: genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses. Plant Biotechnol. J., 16 (8), pp. 1464-1475. https://doi.org/10.1111/pbi.12889
26. Li, Q., Yang, X., Xu, S., Cai, Y., Zhang, D., Han, Y. & Yan, J. (2012). Genome-wide association studies identified three independent polymorphisms associated with a-tocopherol content in maize kernels. PlOS One, 7 (5), e36807. https://doi.org/10.1371/journal.pone.0036807
27. Baseggio, M., Murray, M., Magallanes-Lundback, M., Kaczmar, N., Chamness, J., Buckler, E.S. & Gore, M.A. (2019). Genome-wide association and genomic prediction models of tocochromanols in fresh sweet corn kernels. The Plant Genome, 12 (1), 180038. https://doi.org/10.3835/plantgenome2018.06.0038
28. Park, C., Dwiyanti, M.S., Nagano, A.J., Liu, B., Yamada, T. & Abe, J. (2019). Identification of quantitative trait loci for increased a-tocopherol biosynthesis in wild soybean using a high-density genetic map. BMC Plant Biol., 19 (1), pp. 1-15. https://doi.org/10.1186/s12870-019-2117-z
29. ‡amagajevac, I.ћ., Pfeiffer, T.¦. & Maroniє, D.ћ. (2018). Abiotic stress response in plants: the relevance of tocopherols. In Antioxidants and antioxidant enzymes in higher plants (pp. 233-251). Springer, Cham. https://doi.org/10.1007/978-3-319-75088-0_11
30. Hasanuzzaman, M., Nahar, K. & Fujita, M. (2014). Role of tocopherol (vitamin E) in plants: abiotic stress tolerance and beyond. In Emerging technologies and management of crop stress tolerance (pp. 267-289). Academic Press. https://doi.org/10.1016/B978-0-12-800875-1.00012-0
31. Foyer, C.H. & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell, 17 (7), pp. 1866-1875. https://doi.org/10.1105/tpc.105.033589
32. Munne-Bosch, S. (2005). The role of a-tocopherol in plant stress tolerance. J. Plant Physiol., 162 (7), pp. 743-748. https://doi.org/10.1016/j.jplph.2005.04.022
33. SzymaXska, R., Slesak, I., Orzechowska, A. & Kruk, J. (2017). Physiological and 1biochemical responses to high light and temperature stress in plants. Environ. Exp. Bot., 139, pp. 165-177. https://doi.org/10.1016/j.envexpbot.2017.05.002
34. Farooq, M., Aziz, T., Wahid, A., Lee, D.J. & Siddique, K.H. (2009). Chilling tolerance in maize: agronomic and physiological approaches. Crop Pasture Sci., 60 (6), pp. 501-516. https://doi.org/10.1071/CP08427
35. Liu, X. & Huang, B. (2000). Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci., 40 (2), pp. 503-10. https://doi.org/10.2135/cropsci2000.402503x
36. Sadiq, M., Akram, N. A., Ashraf, M., Al-Qurainy, F. & Ahmad, P. (2019). Alpha-tocopherol-induced regulation of growth and metabolism in plants under non-stress and stress conditions. J. Plant Growth Regul., 38 (4), pp. 1325-1340. https://doi.org/10.1007/s00344-019-09936-7
37. Carrera, C.S. & Seguin, P. (2016). Factors affecting tocopherol concentrations in soybean seeds. J. Agric. Food Chem., 64 (50), pp. 9465-9474. https://doi.org/10.1021/acs.jafc.6b03902
38. Szarka, A., Tomasskovics, B. & Banhegyi, G. (2012). The ascorbate-glutathione-a-tocopherol triad in abiotic stress response. Int. J. Mol. Sci., 13 (4), pp. 4458-4483. https://doi.org/10.3390/ijms13044458
39. Spicher, L., Glauser, G. & Kessler, F. (2016). Lipid antioxidant and galactolipid remodeling under temperature stress in tomato plants. Front. Plant Sci., 7, pp. 167. https://doi.org/10.3389/fpls.2016.00167
40. Sattler, S.E., Gilliland, L.U., Magallanes-Lundback, M., Pollard, M. & DellaPenna, D. (2004). Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. The Plant Cell, 16 (6), pp. 1419-1432. https://doi.org/10.1105/tpc.021360
41. Dong, G., Liu, X., Chen, Z., Pan, W., Li, H. & Liu, G. (2007). The dynamics of tocopherol and the effect of high temperature in developing sunflower (Helianthus annuus L.) embryo. Food Chem., 102 (1), pp. 138-145. https://doi.org/10.1016/j.foodchem.2006.05.013
42. Tang, Y.L., Ren, W.W., Zhang, L. & Tang, K.X. (2011). Molecular cloning and characterization of a tocopherol cyclase gene from Lactuca sativa (Asteraceae). Genet. Mol. Biol., 10 (2), pp. 693-702. https://doi.org/10.4238/vol10-2gmr1061
43. Kumar, S., Singh, R. & Nayyar, H. (2013). a-Tocopherol application modulates the response of wheat (Triticum aestivum L.) seedlings to elevated temperatures by mitigation of stress injury and enhancement of antioxidants. J. Plant Growth Regul., 32 (2), pp. 307-314. https://doi.org/10.1007/s00344-012-9299-z
44. Maeda, H. & DellaPenna, D. (2007). Tocopherol functions in photosynthetic organisms. Curr.Opin. Plant Biol., 10 (3), pp. 260-265. https://doi.org/10.1016/j.pbi.2007.04.006
45. Matringe, M., Ksas, B., Rey, P. & Havaux, M. (2008). Tocotrienols, the unsaturated forms of vitamin E, can function as antioxidants and lipid protectors in tobacco leaves. Plant Physiol., 147 (2), pp. 764-778. https://doi.org/10.1104/pp.108.117614
46. Mokrosnop, V.M. (2014). Functions of tocopherols in the cells of plants and other photosynthetic organisms. Ukr. Biochem. J., 86 (5), pp. 26-36. https://doi.org/10.15407/ubj86.05.026
47. Yamaguchi-Shinozaki, K. & Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell, 6 (2), pp. 251-264. https://doi.org/10.1105/tpc.6.2.251
48. Bafeel, S.O. & Ibrahim, M.M. (2008). Antioxidants and accumulation of a-tocopherol induce chilling tolerance in Medicago sativa. Int. J. Agric. Biol, 10 (6), pp. 593-598.
49. Falk, J. & Munne-Bosch, S. (2010). Tocochromanol functions in plants: antioxidation and beyond. J. Exp. Bot., 61 (6), pp. 1549-1566. https://doi.org/10.1093/jxb/erq030
50. Havaux, M., Eymery, F., Porfirova, S., Rey, P. & Dormann, P. (2005). Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. The Plant Cell, 17 (12), pp. 3451 - 3469. https://doi.org/10.1105/tpc.105.037036
51. Xiang, N., Li, C., Li, G., Yu, Y., Hu, J. & Guo, X. (2019). Comparative evaluation on vitamin E and carotenoid accumulation in sweet corn (Zea mays L.) seedlings under temperature stress. J. Agric. Food Chem., 67 (35), pp. 9772-9781. https://doi.org/10.1021/acs.jafc.9b04452
52. Mokrosnop, V.M., Polishchuk, A.V. & Zolotareva, E.K. (2016). Accumulation of a-tocopherol and b-carotene in Euglena gracilis cells under autotrophic and mixotrophic culture conditions. Appl. Biochem. Microbiol., 52 (2), pp. 216-221. https://doi.org/10.1134/S0003683816020101
53. Trebst, A., Depka, B. & Hollander-Czytko, H. (2002). A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett., 516 (1-3), pp. 156-160. https://doi.org/10.1016/S0014-5793(02)02526-7
54. SzymaXska, R. & Kruk, J. (2010). Plastoquinol is the main prenyllipid synthesized during acclimation to high light conditions in Arabidopsis and is converted to plastochromanol by tocopherol cyclase. Plant Cell Physiol., 51 (4), pp. 537-545. https://doi.org/10.1093/pcp/pcq017
55. Zhang, H., Vasanthan, T. & Wettasinghe, M. (2007). Enrichment of tocopherols and phytosterols in canola oil during seed germination. J. Agric. Food Chem., 55, pp. 355-359. https://doi.org/10.1021/jf060940o
56. Tanaka, R., Oster, U., Kruse, E., Rudiger, W. & Grimm, B. (1999). Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. Plant Physiol., 120, pp. 695-704. https://doi.org/10.1104/pp.120.3.695
57. Leipner, J., Fracheboud, Y. & Stamp, P. (1997). Acclimation by suboptimal growth temperature diminishes photooxidative damage in maize leaves. Plant, Cell, Environment, 20 (3), pp. 366-372. https://doi.org/10.1046/j.1365-3040.1997.d01-76.x
58. Lushchak, V.I. & Semchuk, N.M. (2012). Tocopherol biosynthesis: chemistry, regulation and effects of environmental factors. Acta Physiol. Plant., 34 (5), pp. 1607-1628. https://doi.org/10.1007/s11738-012-0988-9
59. Munne-Bosch, S. & Alegre, L. (2002). Plant aging increases oxidative stress in chloroplasts. Planta, 214 (4), pp. 608-615. https://doi.org/10.1007/s004250100646
60. Mokrosnop, V.M. & Zolotareva, E.K. (2014). Microalgae as tocopherol producers. Biotechnologia, 7 (2), pp. 26-33. https://doi.org/10.15407/biotech7.02.026
61. Sandorf, I. & Hollander-Czytko, H. (2002). Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thaliana. Planta, 216 (1), pp. 173-179. https://doi.org/10.1007/s00425-002-0888-0
62. Liu, X., Hua, X., Guo, J., Qi, D., Wang, L., Liu, Z. & Liu, G. (2008). Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol. Lett., 30 (7), pp. 1275-1280. https://doi.org/10.1007/s10529-008-9672-y
63. Munne-Bosch, S., Schwarz, K. & Alegre, L. (1999). Enhanced formation of a-tocopherol and highly oxidized abietane diterpenes in water-stressed rosemary plants. Plant Physiol., 121, pp. 1047-1052. https://doi.org/10.1104/pp.121.3.1047
64. Espinoza, A., San Martin, A., Lopez-Climent, M., Ruiz-Lara, S., Gomez-Cadenas, A. & Casaretto, J.A. (2013). Engineered drought-induced biosynthesis of a-tocopherol alleviates stress-induced leaf damage in tobacco. J. Plant Physiol., 170, pp. 1285-1294. https://doi.org/10.1016/j.jplph.2013.04.004
65. Rao, S.R. & Ravishankar, G.A. (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnol. Adv., 20 (2), pp. 101-153. https://doi.org/10.1016/S0734-9750(02)00007-1
66. Espinosa-Leal, C.A., Puente-Garza, C.A. & Garcia-Lara, S. (2018). In vitro plant tissue culture: means for production of biological active compounds. Planta, 248 (1), pp. 1-18. https://doi.org/10.1007/s00425-018-2910-1
67. Georgiev, M.I., Weber, J. & Maciuk, A. (2009). Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl. Microbiol. Biotechnol., 83 (5), pp. 809-823. https://doi.org/10.1007/s00253-009-2049-x
68. Gala, R., Mita, G. & Caretto, S. (2005). Improving a-tocopherol production in plant cell cultures. J. Plant Physiol., 162 (7), pp. 782-784. https://doi.org/10.1016/j.jplph.2005.04.010
69. Caretto, S., Speth, E.B., Fachechi, C., Gala, R., Zacheo, G. & Giovinazzo, G. (2004). Enhancement of vitamin E production in sunflower cell cultures. Plant Cell Rep., 23 (3), pp. 174-179. https://doi.org/10.1007/s00299-004-0799-6
70. Chavan, S.P., Lokhande, V.H., Nitnaware, K.M. & Nikam, T.D. (2011). Influence of growth regulators and elicitors on cell growth and a-tocopherol and pigment productions in cell cultures of Carthamus tinctorius L. Appl. Microbiol. Biotechnol., 89 (6), pp. 1701-1707. https://doi.org/10.1007/s00253-010-3014-4
71. Furuya, T., Yoshikawa, T., Kimura, T. & Kaneko, H. (1987). Production of tocopherols by cell culture of safflower. Phytochemistry, 26 (10), pp. 2741-2747. https://doi.org/10.1016/S0031-9422(00)83582-7
72. Badrhadad, A., Piri, K. & Ghiasvand, T. (2013). Increase alpha-tocopherol in cell suspension cultures Elaeagnus angustifolia L. Int. J. Agri. Crop Sci., pp. 1328-1331.
73. Antognoni, F., Faudale, M., Poli, F. & Biondi, S. (2009). Methyl jasmonate differentially affects tocopherol content and tyrosine amino transferase activity in cultured cells of Amaranthus caudatus and Chenopodium quinoa. Plant Biol., 11, pp. 161-169. https://doi.org/10.1111/j.1438-8677.2008.00110.x
74. Fachechi, C., Nisi, R., Gala, R., Leone, A. & Caretto, S. (2007). Tocopherol biosynthesis is enhanced in photomixotrophic sunflower cell cultures. Plant Cell Rep., 26, pp. 525-530. https://doi.org/10.1007/s00299-006-0268-5
75. Caretto, S., Nisi, R., Paradiso, A. & De Gara, L. (2010). Tocopherol production in plant cell cultures. Mol. Nutr. Food Res., 54 (5), pp. 726-730. https://doi.org/10.1002/mnfr.200900397
76. Geipel, K., Song, X., Socher, M.L., Kummritz, S., Puschel, J., Bley, T. & Steingroewer, J. (2014). Induction of a photomixotrophic plant cell culture of Helianthus annuus and optimization of culture conditions for improved a-tocopherol production. Appl. Microbiol. Biotechnol., 98 (5), pp. 2029-2040. https://doi.org/10.1007/s00253-013-5431-7
77. Hellmann, H. A. & Smeekens, S. (2014). Sugar sensing and signaling in plants. Frontiers in Plant Science, 5, p. 113. https://doi.org/10.3389/fpls.2014.00113
78. Sege№ov«, A., ‡ervenъ, J. & Roitsch, T. (2018). Advancement of the cultivation and upscaling of photoautotrophic suspension cultures using Chenopodium rubrum as a case study. Plant Cell, Tissue and Organ Culture, 135 (1), pp. 37-51. https://doi.org/10.1007/s11240-018-1441-6
79. Srinivasan, A., Vijayakumar S., Karthik R. & Srivastava, S. (2019). Rational metabolic engineering for enhanced alpha-tocopherol production in Helianthus annuus cell culture. Biochem. Engineer. J., 151, p. 107256. https://doi.org/10.1016/j.bej.2019.107256