The aim of work was to study the genomes of representatives of the kingdom Fungi for the prevalence of sequences that are similar to the amplicon sequence of the xylose-fermenting yeast strain Scheffersomyces stipitis UCM Y-2810 and to determine the level of their genetic relation. The yeast strain Scheffersomyces stipitis UCM Y-2810 was isolated in 2021 from decaying wood. An amplicon (567 bp) of the genomic sequence of the isolate was obtained. In bioinformatic research, GenBank «Nucleotide collection» database and the BLASTN program package on the NCBI server were used, and only the sequences of chromosomes of organisms whose nucleotide sequence was fully determined were analyzed. Sequences similar to obtained amplicon were found to belong to fungi from the Saccharomycotina subphylum (Ascomycota phylum). The selected sequences turned out to be exclusively fragments of genes that determine vacuolar proteinases B. In the genome of each fungal organism from the obtained sample data, there was just one sequence similar to the studied amplicon. Genus Scheffersomyces strains showed the highest similarity values. The molecular size of the Scheffersomyces stipitis UCM Y-2810 amplicon was found to be 67.2 % of the size of the determinant sequence encoding the enzyme domain of Scheffersomyces stipitis CBS 6054 from the Dutch WI-KNAW collection of microorganisms. For the genus Scheffersomyces strains, a statistically reliable strong positive correlation was established between the similarity values of the determinant sequences encoding vacuolar proteases B and fragments of ribosomal clusters (ITS+LSU). Sequences similar to Scheffersomyces stipitis UCM Y-2810 amplicon belonged exclusively to the yeasts of subphylum Saccharomycotina, where the determinants encoding vacuolar proteases B of Scheffersomyces strains were the most similar ones. Given the correlation with ribosomal barcodes for fungi, the sequence of the vacuolar serine protease gene can be considered as an auxiliary genetic marker for the identification of yeasts of genus Scheffersomyces.
Keywords: Scheffersomyces, amplicon, vacuolar serine protease, gene, identity, query coverage
Full text and supplemented materials
Free full text: PDFReferences
1. Peay, K.G., Kennedy, P.G. & Bruns, T.D. (2008). Fungal community ecology: a hybrid beast with a molecular master. Biosci., 58 (9), pp. 799-810. https://doi.org/10.1641/B580907
2. Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., Chen, W., Fungal Barcoding Consortium & Fungal Barcoding Consortium Author List (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceed. Nat. Acad. Sci. USA, 109 (16), pp. 6241-6246. https://doi.org/10.1073/pnas.1117018109
3. Bruns, T.D., White, T.J. & Taylor, J.W. (1991). Fungal Molecular Systematics. Ann. Rev. Ecol., Evolut., Systemat., 22, pp. 525-564. https://doi.org/10.1146/annurev.es.22.110191.002521
4. Yamada, Y., Maeda, K. & Mikata, K. (1994). The phylogenetic relationships of the hat-shaped ascospore-forming, nitrate-assimilating Pichia species, formerly classified in the genus Hansenula Sydow et Sydow, based on the partial sequences of 18S and 26S ribosomal RNAs (Saccharomycetaceae): the proposals of three new genera, Ogataea, Kuraishia, and Nakazawaea. Biosci., Biotechnol., Biochem., 58 (7), pp. 1245-1257. https://doi.org/10.1271/bbb.58.1245
5. Ueda-Nishimura, K. & Mikata, K. (2001). Reclassification of Pichia scaptomyzae and Pichia galeiformis. Antonie van Leeuwenh., 79 (3-4), pp. 371-375. https://doi.org/10.1023/A:1012045906098
6. VЖtrovskъ, T., KolaйHk, M., ¦if№«kov«, L., Zelenka, T. & Baldrian, P. (2016). The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Mol. Ecol. Res., 16 (2), pp. 388-401. https://doi.org/10.1111/1755-0998.12456
7. Xu, J. (2016). Fungal DNA barcoding. Genome, 59 (11), pp. 913-932. https://doi.org/10.1139/gen-2016-0046
8. Pѕrez-Izquierdo, L., Morin, E., Maurice, J.P., Martin, F., RincЩn, A. & Buѕe, M. (2017). A new promising phylogenetic marker to study the diversity of fungal communities: the glycoside hydrolase 63 gene. Mol. Ecol. Res., 17 (6), e1-e11. https://doi.org/10.1111/1755-0998.12678
9. Meyer, W., Irinyi, L., Hoang, M.T.V., Robert, V., Garcia-Hermoso, D., Desnos-Ollivier, M., Yurayart, C., Tsang, C.C., Lee, C.Y., Woo, P.C.Y., Pchelin, I.M., Uhrlab, S., Nenoff, P., Chindamporn, A., Chen, S., Hebert, P.D.N., Sorrell, T. C. & ISHAM barcoding of pathogenic fungi working group (2019). Database establishment for the secondary fungal DNA barcode translational elongation factor 1a (TEF1a) 1. Genome, 62 (3), pp. 160-169. https://doi.org/10.1139/gen-2018-0083
10. Moehle, C.M., Tizard, R., Lemmon, S.K., Smart, J. & Jones, E.W. (1987). Protease B of the lysosomelike vacuole of the yeast Saccharomyces cerevisiae is homologous to the subtilisin family of serine proteases. Mol. Cell. Biol., 7 (12), pp. 4390-4399. https://doi.org/10.1128/mcb.7.12.4390-4399.1987
11. Hecht, K.A., O'Donnell, A.F. & Brodsky, J.L. (2014). The proteolytic landscape of the yeast vacuole. Cellular Logistics, 4 (1), e28023. https://doi.org/10.4161/cl.28023
12. Settembre, C., Fraldi, A., Medina, D.L. & Ballabio, A. (2013). Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nature Rev. Mol. Cell Biol., 14 (5), pp. 283-296. https://doi.org/10.1038/nrm3565
13. Ianieva, O.D. (2022). Pentose-fermenting yeasts in nature: ecology, biodiversity, and applications. Mikrobiol. zhurn., 84 (5), pp. 58-71. https://doi.org/10.15407/microbiolj84.05.058
14. Ianieva, O.D., Fomina, M.O., Babich, T.V., Dudka, G.P. & Pidgorskyi, V.S. (2022). Evaluation of non-conventional yeasts isolated from rotten wood for hydrolytic activities and xylose fermentation. Mikrobiol. zhurn., 84 (4), pp. 88-97. https://doi.org/10.15407/microbiolj84.04.088
15. Fomina, M., Yurieva O., Pavlychenko, A., Syrchin, S., Filipishena, O., Polishchuk, L., Hong, J.W., Hretskyi, I., Ianieva, O. & Pidgorskyi, V. (2024). Application of natural fungi in bioconversion of lignocellulosic waste to second-generation ethanol. Biosyst. Divers., 32 (1), pp. 49-59. https://doi.org/10.15421/012405
16. Reeb, V., Lutzoni, F. & Roux, C. (2004). Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Mol. Phylogen. Evolut., 32 (3), pp. 1036-1060. https://doi.org/10.1016/j.ympev.2004.04.012
17. Urbina, H. & Blackwell, M. (2012). Multilocus phylogenetic study of the Scheffersomyces yeast clade and characterization of the N-terminal region of xylose reductase gene. PloS One, 7 (6), e39128. https://doi.org/10.1371/journal.pone.0039128
18. Morais, C.G., Cadete, R.M., Uetanabaro, A.P., Rosa, L.H., Lachance, M.A. & Rosa, C.A. (2013). D-xylose-fermenting and xylanase-producing yeast species from rotting wood of two Atlantic Rainforest habitats in Brazil. Fungal Gen. Biol., 60, pp. 19-28. https://doi.org/10.1016/j.fgb.2013.07.003
19. Arayjo, J.A., de Abreu-Lima, T.L. & Carreiro, S.C. (2019). Selection and identification of xylose-fermenting yeast strains for ethanol production from lignocellulosic biomass. Boletim Do Centro De Pesquisa De Processamento De Alimentos, 36 (1), pp. 68-79. https://doi.org/10.5380/bceppa.v36i1.59557