Fiziol. rast. genet. 2020, vol. 52, no. 2, 128-139, doi:

PCR analyses of first-generation plants of Amaranthus caudatus L. after «floral-dip» genetic transformation

Yaroshko O.M.1, Morgun B.V.1,2, Velyko­zhon L.G.1,2, Gajdošova A.3, Andrushenko O.L.4, Kuchuk M.V.1

  1. Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine Akademika Zabolotnoho St., 148, Kyiv, 03143, Ukraine
  2. Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine Vasylkivska St., 31/17, Kyiv, 03022, Ukraine
  3. Institute of Plant Genetics and Biotechnology PSBC Slovak Academy of Sciences Akademická St., 2, Nitra, 95007, Slovak Republic
  4. M.M. Gryshko National Botanical Garden, National Academy of Sciences of Ukraine, Kyiv, Ukraine Tymiriazievska St., 1, 01014, Kyiv, Ukraine

Amaranth is the C4-plant which used in various industries and is a promising object for genetic transformation. After «floral-dip» transformation of Helios and Karmin cultivars of Amaranthus caudatus L. using Agrobacterium rhizogenes A4 strain and A. tumefaciens GV3101 strain, transformed plants of the first generation were obtained. Gene vectors pCB125 and pCB131 contained a bar gene imparting resistance to commercial herbicide Basta. Seeds of Helios and Karmin cultivars of amaranth were obtained. The T-DNA transmission of strains A4 (pCB131) and GV3101 (pCB125) was evaluated by herbicide selection of amaranth plants. Tolerant plants were obtained for both cultivars after spraying with the herbicide. The percentage of A. w caudatus cv. Helios (vector pCB125) plants tolerant to the effect of the herbicide (160 mg/l) was 4.05 %, cv. Karmin (vector pCB125) — was 2.4 %. The percentage of tolerant A. w caudatus cv. Karmin (vector pCB131) plants was 0.6 %. The transgene presence of pCB125 gene vector (A. tumefaciens strain GV3101) and pCB131 vector (A. rhizogenes A4 strain) in amaranth tissue was analyzed. Integration of the bar gene and nos terminator in plants was confirmed by PCR analysis. The percentage of bar-positive plants for cv. Helios (gene vector pCB125) was 0.6 % of the total initial quantity of plants (12 positive plants of 2,000), and for cv. Karmin (gene vector pCB131) was 0.1 % of the total initial quantity of plants (2 plants of 2,000). The percentage of nos terminator-positive plants for cv. Helios was 0.15 % of the total initial quantity of plants (3 plants of 2,000).

Keywords: Amaranthus caudatus L., Agrobacterium, transformation, genetically modified plants

Fiziol. rast. genet.
2020, vol. 52, no. 2, 128-139

Full text and supplemented materials

Free full text: PDF  


1. Biswas, M., Das, S.S. & Dey, S. (2013). Establishment of a stable Amaranthus tricolor callus line for production of food colorant. Food Sci. Biotechnol., 22, No. 1, pp. 1-8.

2. Yaacob, J.S., Hwei, L.C. & Taha, R.M. (2012). Pigment analysis and tissue culture of Amaranthus cruentus L. Acta Horticult., 958, pp. 171-178.

3. Swain, S.S., Sahu, L., Barik, D.P. & Chand, P.K. (2010). Agrobacteriumwplant factors influencing transformation of «Joseph's coat» (Amaranthus tricolor L.). Scientia Horticult., 125 (3), pp. 461-468.

4. Pal, A., Swain, S.S., Mukherjee, A.K. & Chand, P.K. (2013). Agrobacterium pRi TL-DNA rolB and TR-DNA Opine Genes Transferred to the Spiny Amaranth (Amaranthus spinosus L.) - a Nutraceutical Crop. Food Technol. and Biotechnol., 51 (1), pp. 26-35.

5. Jofre-Garfias, A.E., Villegas-Sepulveda, N., Cabrera-Ponce, J.L., Adame-Alvarez, R.M., Herrera-Estrella, L. & Simpson, J. (1997). Agrobacterium mediated transformation of Amaranthus hypochondriacus: light- and tissue-specific expression of a pea chlorophyll a/b-binding protein promoter. Plant Cell Reports, 16, pp. 847-52.

6. Pal, A., Swain, S., Das, A.B., Mukherjee, A.K. & Chand, P.K. (2013). Stable germ line transformation of a leafy vegetable crop amaranth (Amaranthus tricolor L.) mediated by Agrobacterium tumefaciens. In Vitro Cellular & Developmental Biology-Plant, 49 (2), pp. 114-28.

7. Taipova, R.M. & Kuluev, B.R. (2015). Amaranth features of culture, prospects of cultivation in Russia and generation of transgenic Russian varieties. Biomica, 7 (4), pp. 284-99.

8. Yaroshko, O.M. & Kuchuk, M.V. (2018). Agrobacterium-caused transformation of cultivars Amaranthus caudatus L. and hybrids of A. caudatus L. w A. paniculatus. Int. J. of Secondary Metabolite (IJSM).

9. Yaroshko, O., Vasylenko, M., Gajdošova, A., Morgun, B., Khrystan, O., Velykozhon, L. & Kuchuk M. (2019). «Floral-dip» transformation of Amaranthus caudatus L. and hybrids A. caudatus w A. paniculatus L. Biologija, 64, No. 4, pp. 321-330.

10. State Register of Plant Varieties Suitable for Dissemination in Ukraine in 2019 (2019). Kyiv, p. 289.

11. Doroshenko, O. (2017). Amaranth field germination in the conditions of the western Forest-Steppe. Aktualni Pytannia Suchasnykh Tekhnolohii Vyroshchuvannia Silskohospodarskykh Kultur V Umovakh Zmin Klimatu. Zbirnyk naukovykh prats vseukr. nauk.-prakt. konferentsiia (15-16 chervnia 2017. Kamianets-Podilskyi). Ternopil Krok, pp. 78-80 [in Ukrainian].

12. Zhang, X., Henriques, R., Lin, S.S., Niu, Q. & Chua, N.H. (2006). Agrobacterium mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols, 1 (2), pp. 641-646.

13. Curtis, I.S. (2004). Protocols of transgenic crops by floral-dip method. Methods in Mol. Biol., 286, pp. 103-109.

14. Clough, S.J. & Bent, A.F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J., 16, pp. 735-43.

15. Stewart, C.N. & Via, L.E. (1993). A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques, 14 (5), pp. 748-50.

16. Nitovska, I.O., Abraimova, O.Ye., Satarova, T.M., Shakhovskyi, A.M. & Morhun, B.V. (2014). Biollistics transformation of immature maize embryos. Faktory eksperymentalnoi evoliutsii orhanizmiv. Zbirnyk naukovykh prats za red. Kunakha V.A., 15, pp. 112-117 [in Ukrainian].

17. James, D., Schmidt, A.-M., Wall, E., Green, M. & Masri, S. (2003). Reliable detection and identification of genetically modified maize, soybean, and canola by multiplex PCR analysis. J. Agric. Food Chem., 51 (20), pp. 5829-5834.

18. Godar, A.S., Varanasi, V.K., Nakka, S., Prasad, P.V., Thompson, C.R. & Mithila, J. (2015). Physiological and Molecular Mechanisms of Differential Sensitivity of Palmer Amaranth (Amaranthus palmeri) to Mesotrione at Varying Growth Temperatures. PLOS One, 19, 10 (5), p. e0126731.

19. Parminder, S. Chahal, Vijay, K. Varanasi, Jugulam, M. & Jhala, A.J. (2017). Glyphosate-resistant palmer amaranth (Amaranthus palmeri) in Nebraska: confirmation, EPSPS gene amplification, and response to POST corn and soybean herbicides. Weed Technol., 31, pp. 80-93.

20. Sawada, H., Ieki, H. & Matsuda, I. (1995). PCR detection of Ti and Ri Plasmids from phytopathogenic Agrobacterium strains. Applied and Environmental Microbiology, 61 (2), pp. 828-831.

21. Harrison, S.J., Mott, E.K., Parsley, K., Aspinall, S., Gray, J.C. & Cottage, A. (2006). A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods, 2, pp. 1-7.

22. De Cleene, M. & De Ley, J. (1976). The host range of Crown Gall. The Botanical Review, 42, pp. 389-466.

23. Swain, S.S., Sahu, L., Barik, D.P. & Chand, P.K. (2009). Genetic transformation of Amaranthus tricolor L. using Ri plasmid vectors. In: Bastia AK and Mohapatra UB (eds.) Recent trends in monitoring and bioremediation of mine and industrial environment. North Orissa University: Orissa.

24. Munusamy, U., Abdullah, S., Aziz, M. & Khazaai, H. (2013). Female reproductive system of Amaranthus as the target for Agrobacterium-mediated transformation. Advances in Bioscience and Biotechnology, 4, pp.188-192.