Фізіологія рослин і генетика 2019, том 51, № 1, 28-54, doi: https://doi.org/10.15407/frg2019.01.028

Антиоксидантна система і стійкість рослин до нестачі вологи

Колупаєв Ю.Є.1,2, Кокорев О.І.1

  1. Харківський національний аграрний університет ім. В.В. Докучаєва
  2. Харківський національний університет ім. В.Н. Каразіна

Посуха є одним з основних чинників середовища, що лімітують ріст і продуктивність рослин. В огляді проаналізовано причини посилення генерування активних форм кисню (АФК) за умов посухи в хлоропластах, мітохондріях, пероксисомах і клітинних стінках. Розглянуто значення НАДФН-оксидази, позаклітинної пероксидази і супероксиддисмутази в утворенні сигнального пулу АФК в умовах осмотичного стресу та індукуванні захисних реакцій рос­лин. Наведено характеристики компонентів антиоксидантної системи. Оцінено внесок основних антиоксидантних ферментів і низькомолекулярних антиоксидантів у підтримання редокс-гомеостазу за посухи. Особливу увагу приділено ролі проліну та інших сумісних осмолітів в антиоксидантному захисті рослин. Проаналізовано функціональну взаємодію антиоксидантних ферментів, низькомолекулярних антиоксидантів і осмолітів з антиоксидантними властивостями в умовах посухи. Розглянуто можливість підвищення стійкості рослин до нестачі вологи за допомогою екзогенних антиоксидантів, праймінгу з використанням сигнальних молекул і стресових фітогормонів, а також шляхом трансформації генами антиоксидантних ферментів чи ензимів, задіяних у регуляції вмісту низькомолекулярних протекторів. Вказано, що прогрес у дослідженні антиоксидантної системи стане динамічнішим за використання методів аналізу антиоксидантів in vivo в певних клітинних компартментах і реальному часі.

Ключові слова: посуха, активні форми кисню, антиоксидантна система, антиоксидантні ферменти, низькомолекулярні антиоксиданти, пролін

Фізіологія рослин і генетика
2019, том 51, № 1, 28-54

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Gerten, D., Schaphoff, S. & Lucht, W. (2007). Potential future changes in water limitations of the terrestrial biosphere. Climatic Change, 80 (3-4), pp. 277-299. https://doi.org/10.1007/s10584-006-9104-8

2. Chaves, M.M. & Oliveira, M.M. (2004). Mechanisms underlying plant resilience to water deficits: Prospects for water saving agriculture. J. Exp. Bot., 55, pp. 2365-2384. https://doi.org/10.1093/jxb/erh269

3. Wilkinson, S. & Davies, W. (2010). Drought, ozone, ABA and ethylene: new insights from cellto plant to community. Plant Cell Environ., 33, pp. 510-525. https://doi.org/10.1111/j.1365-3040.2009.02052.x

4. Li, X. & Liu, F. (2016). Drought stress memory and drought stress tolerance in plants: biochemical and molecular basis. In Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, L.S. (Eds). Drought Stress Tolerance in Plants, Vol. 1 (pp. 17-44). Springer, Cham. https://doi.org/10.1007/978-3-319-28899-4_2

5. Zagorchev, L., Teofanova, D. & Odjakova, M. (2016). Ascorbate-glutathione cycle: Controlling the redox environment for drought tolerance. In Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, L.S. (Eds.). Drought Stress Tolerance in Plants, Vol. 1. Springer, Cham, pp. 187-226. https://doi.org/10.1007/978-3-319-28899-4_8

6. Suzuki, N. & Mittler, R. (2006). Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant., 126, pp. 45-51. https://doi.org/10.1111/j.0031-9317.2005.00582.x

7. Liang, X., Zhang, L., Natarajan, S.K. & Becker, D.F. (2013). Proline mechanisms of stress survival. Antioxid. Redox Signal. 19, pp. 998-1011. https://doi.org/10.1089/ars.2012.5074

8. Yang, J., Wu, F., Gao, J. & Wang, G. (2014). Polyamine-induced nitric oxide generation and its potential requirement for peroxide in suspension cells of soybean cotyledon node callus. Plant Physiol. Biochem., 79, pp. 41-47. https://doi.org/10.1016/j.plaphy.2014.02.025

9. Carvalho, K., Campos, M.K., Domingues, D.S.,Pereira, L.F. & Vieira, L.G. (2013). The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol. Biol. Rep., 40, pp. 3269-3279. https://doi.org/10.1007/s11033-012-2402-5

10. Szalai, G., Janda, K., Dark, E., Janda, T., Peeva, V. & Pl, M. (2017). Comparative analysis of polyamine metabolism in wheat and maize plants. Plant Physiol. Biochem., 112, pp. 239-250. https://doi.org/10.1016/j.plaphy.2017.01.012

11. Gautam, V., Kaur, R., Kohli, S.K., Verma, V., Kaur, P., Singh, R., Saini, P., Arora, S., Thukral, A.K., Karpets, Y.V., Kolupaev, Y.E. & Bhardwaj, R. (2017). ROS compartmentalization in plant cells under abiotic stress condition. In: Khan, M.I.R. & Khan, N.A. (Eds.) Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress (pp. 89-114). Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-10-5254-5_4

12. Foyer, C.H. & Noctor, G. (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox Signal., 11, pp. 861-906. https://doi.org/10.1089/ars.2008.2177

13. Foyer, C.H. & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol., 155, pp. 93-100. https://doi.org/10.1104/pp.110.166181

14. Schmitt, F.J., Renger, G., Friedrich, T., Kreslavski, V.D., Zharmukhamedov, S.K., Los, D.A., Kuznetsov, V.V. & Allakhverdiev, S.I. (2014). Reactive oxygen species: re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochim. Biophys. Acta, 1837 (6), pp. 835-848. https://doi.org/10.1016/j.bbabio.2014.02.005

15. Trchounian, A., Petrosyan, M. & Sahakyan, N. (2016). Plant cell redox homeostasis and reactive oxygen species. In Gupta, D.K. et al. (Eds.). Redox State as a Central Regulator of Plant-Cell Stress Responses (pp. 25-50). Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-44081-1_2

16. Kreslavski, V.D., Allakhverdiev, S.I., Los, D.A. & Kuznetsov, V.V. (2012). Signaling role of reactive oxygen species in plants under stress. Russ. J. Plant Physiol., 59, pp. 141-154. https://doi.org/10.1134/S1021443712020057

17. Stasik, O.O. & Jones, H.G. (2011). The role of photorespiration in response of photosynthesis to temperature increase in wheat leaves. Fiziol. Biochim. Kult. Rast., 43 (1), pp. 38-46 [in Ukrainian].

18. Cruz, M. & de Carvalho, H. (2008). Drought stress and reactive oxygen species production, scavenging and signalling. Plant Signal Behav., 3(3), pp. 156-165. https://doi.org/10.4161/psb.3.3.5536

19. Cvetkovska, M. & Vanlerberghe, G.C. (2013). Alternative oxidase impacts the plant response to biotic stress by influencing the mitochondrial generation of reactive oxygen species. Plant Cell Environ., 36, pp. 721-732. https://doi.org/10.1111/pce.12009

20. Rhoads, D.M., Umbach, A.L., Subbaiah, C.C. & Siedow, J.N. (2006). Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol., 141, pp. 357-366. https://doi.org/10.1104/pp.106.079129

21. Bartoli, C.G., Gomez, F., Martinez, D.E. & Guiamet, J.J. (2004). Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J. Exp. Bot., 55, pp. 1663-1669. https://doi.org/10.1093/jxb/erh199

22. Sharova, E.I. & Medvedev, S.S. (2017). Redox reactions in apoplast of growing cells. Russ. J. Plant Physiol., 64(1), pp. 1-14. https://doi.org/10.1134/S1021443717010149

23. Sagi, M.& Fluhr, R. (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol., 141, pp. 336-340. https://doi.org/10.1104/pp.106.078089

24. Glyan'ko, A.K. & Ischenko, A.A. (2010). Structural and functional characteristics of plant NADPH oxidase: A review. Appl. Biochem. Microbiol., 46, pp. 463-471. https://doi.org/10.1134/S0003683810050017

25. Kolupaev, Yu.E., Karpets, Y.V. & Dmitriev, A.P. (2015). Signal mediators in plants in responseto abiotic stress: Calcium, reactive oxygen and nitrogen species. Cytol. Genet., 49(5), pp. 338-348. https://doi.org/10.3103/S0095452715050047

26. Kolupaev, Yu.E. & Karpets, Yu.V. (2013). Participation of reactive oxygen species in formation of induced resistances of plants to abiotic stressors. In Suzuki, M. & Yamamoto, S. (Eds.). Handbook on Reactive Oxygen Species (ROS): Formation Mechanisms, Physiological Roles and Common Harmful Effects (pp. 109-136). New York: Nova Science Publishers.

27. Oboznyi, A.I., Kolupaev, Yu.E., Vayner, A.A. & Yastreb, T.O. (2013). The role of superoxide dismutase in inducing of wheatseedlings tolerance to osmotic shock. J. Stress Physiol. Biochem., 9(3), pp. 251-261.

28. Minibayeva, F., Kolesnikov, O., Chasov, A. Beckett, R.P., Lüthje S., Vylegzhanina, N., Buck, F. & Böttger, M. (2009). Wound-induced apoplastic peroxidase activities: their roles in the production and detoxification of reactive oxygen species. Plant Cell Environ., 32, pp. 497-508. https://doi.org/10.1111/j.1365-3040.2009.01944.x

29. Oboznyi, A.I. & Kolupaev, Yu.E. (2012). Participation of the enzymatic systems generating reactive oxygen species, in formation cross-tolerance of plantlets of wheat to the hyperthermia and osmotic shock. Fiziol. Biokhim. Kult. Rast., 44 (4), pp. 347-354 [in Russian].

30. Gill, S.S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48, pp. 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016

31. Blokhina, O., Virolainen, E. & Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot., 91, pp. 179-194. https://doi.org/10.1093/aob/mcf118

32. Pradedova, E.V., Isheeva, O.D. & Salyaev, R.K. (2011). Classification of the antioxidant defense system as the ground for reasonable organization of experimental studies of the oxidative stress in plants. Russ. J. Plant Physiol., 58, pp. 210-217. https://doi.org/10.1134/S1021443711020166

33. Kolupaev, Yu.E. (2016). Plant cell antioxidants and their role in ROS signaling and plant resistance. Uspekhi Sovrem. Biologii, 136 (2), pp. 181-198 [in Russian].

34. Das, K. & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2: 53. https://doi.org/10.3389/fenvs.2014.00053

35. Alscher, R.G., Erturk, N. & Heath, L.S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot., 53, pp. 1331-1341. https://doi.org/10.1093/jexbot/53.372.1331

36. Ogawa, K., Kanematsu, S. & Asada, K. (1996). Intra-and extra-cellular localization of "cytosolic" Cu/Zn-superoxide dismutase in spinach leaf and hypocotyls. Plant Cell Physiol., 37, pp. 790-799. https://doi.org/10.1093/oxfordjournals.pcp.a029014

37. Kuzniak, E. & Sklodowska, M. (2004). The effect of Botrytic cinerea infection on the antioxidant proline of mitochondria from tomato leaves. J. Exp. Bot., 55, pp. 605-612. https://doi.org/10.1093/jxb/erh076

38. del Río, L.A., Corpas, F.J., Sandalio, L.M., Palma, J.M. & Barroso, J.B. (2003). Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life, 55(2), pp. 71-81. https://doi.org/10.1080/1521654031000094694

39. Guo, Z., Ou, W., Lu, S. & Zhong, Q. (2006). Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol. Biochem., 44 (11-12), pp. 828-836. https://doi.org/10.1016/j.plaphy.2006.10.024

40. Samota, M.K., Sasi, M. & Singh, A. (2017). Impact of seed priming on proline content andantioxidant enzymes to mitigate drought stress in rice genotype. Int. J. Curr. Microbiol. App. Sci., 6(5), pp. 2459-2466. https://doi.org/10.20546/ijcmas.2017.605.275

41. Mamenko, T.P. & Yaroshenko, O.A. (2012). Response of antioxidant system in contrasting by drought resistance winter wheat cultivars to water deficit. Fiziol. Biochim. Kult. Rast., 44 (4), pp. 323-330 [in Ukrainian].

42. Sokolovska-Sergienko, O.G. & Kiriziy, D.A. (2010). Intensity of photosynthesis and activity of chloroplast superoxide dismutase in wheat flag leaves during ripening. Fiziol. Biochim. Kul't. Rast., 42(1), pp. 67-72 [in Ukrainian].

43. Anjum, S.A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., Zohaib, A., Abbas, F., Saleem, M.F., Ali, I. & Wang, L.C. (2017). Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front. Plant Sci. 6: 69. https://doi.org/10.3389/fpls.2017.00069

44. Kumari, N., Avtar, R., Kumari, A., Sharma, B., Rani, B. & Sheoran, R.K. (2018). Antioxidative response of Indian mustard subjected to drought stress. J. Oilseed Brassica., 9(1), pp. 40-44.

45. Zandalinas, S.I., Balfagn, D., Arbona, V. & Gmez-Cadenas, A. (2017). Modulation of antioxidant defense system is associated with combined drought and heat stress tolerance in citrus. Front. Plant Sci. 8:953. https://doi.org/10.3389/fpls.2017.00953

46. Mandi, S., Kumar, P.A., Nath, R. & Hembram, S. (2018). ROS scavenging and nitrate reductase enzyme activity in mungbean [Vigna radiata (L.) Wilczek] under drought stress. Int. J. Curr. Microbiol. App. Sci., 7 (4), pp. 1031-1039. https://doi.org/10.20546/ijcmas.2018.704.113

47. Tina, R.R., Shan, X.R., Wang, Y., Guo, S.Y., Mao, B., Wang, W., Wu, H.Y. & Zhao, T.H. (2017). Response of antioxidant system to drought stress and rewatering in Alfalfa during branching. IOP Conf. Series: Earth and Environ. Sci. 94 01212. https://doi.org/10.1088/1755-1315/94/1/012129

48. Haider, M.S., Kurjogi, M.M., Khalil-Ur-Rehman, M., Fiaz, M., Pervaiz, T., Jiu S., Haifeng, J., Chen, W. & Fang, J. (2017). Grapevine immune signaling network in response to drought stress as revealed by transcriptomic analysis. Plant Physiol. Biochem., 121, pp. 187-195. https://doi.org/10.1016/j.plaphy.2017.10.026

49. Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., Inzé, D. & Van Camp, W. (1997). Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J., 16, pp. 4806-4816. https://doi.org/10.1093/emboj/16.16.4806

50. Guan, L.M. & Scandalios, J.G. (2000). Hydrogen peroxide-mediated catalase gene expression in response to wounding. Free Radical Biol. Med., 28, pp. 1182-1190. https://doi.org/10.1016/S0891-5849(00)00212-4

51. Nyathi, Y. & Baker, A. (2006). Plant peroxisomes as a source of signalling molecules. Biochim. Biophys. Acta, 1763, pp. 1478-1495. https://doi.org/10.1016/j.bbamcr.2006.08.031

52. Chakrabarty, A., Aditya, M., Dey, N., Bani, N. & Bhattacharjee, S. (2016). Antioxidant signaling and redox regulation in drought — and salinity-stressed plants. In Hossain, M. et al. (Eds.). Drought Stress Tolerance in Plants, Vol. 1 (pp. 465-498). Springer, Cham. https://doi.org/10.1007/978-3-319-28899-4_20

53. Landi, S., De Lillo, A., Nurcato, R., Grillo, S. & Esposito, S. (2017). In-field study on traditional Italian tomato landraces: The constitutive activation of the ROS scavenging machinery reduces effects of drought stress. Plant Physiol Biochem., 118, pp. 150-160. https://doi.org/10.1016/j.plaphy.2017.06.011

54. Smertenko, A. (2017). Can peroxisomes inform cellular response to drought? Trend Plant Sci., 22(12), pp. 1005-1007. https://doi.org/10.1016/j.tplants.2017.09.021

55. Noctor, G., Mhamdi, A. & Foyer, C.H. (2014). The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol., 164, pp. 1636-1648. https://doi.org/10.1104/pp.113.233478

56. Caverzan, A., Passaia, G., Rosa, S.B., Ribeiro, C.W., Lazzarotto, F. & Margis-Pinheiro, M. (2012). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol., 35(4), pp. 1011-1019. https://doi.org/10.1590/S1415-47572012000600016

57. Secenji, M., Hideg, E., Bebes, A. & Gyorgyey, J. (2010). Transcriptional differences in gene families of the ascorbate-glutathione cycle in wheat during mild water deficit. Plant Cell Rep., 29 (1), pp. 37-50. https://doi.org/10.1007/s00299-009-0796-x

58. Zhang, Z., Zhang, Q., Wu, J., Zheng, X., Zheng, S., Sun, X., Qiu, Q. & Lu, T. (2013). Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One, 8 (2), e57472. https://doi.org/10.1371/journal.pone.0057472

59. Guo, Y.Y., Tian, S.S., Liu, S.S. Wang, W.Q. & Sui, N. (2018). Energy dissipation and antioxidant enzyme system protect photosystem II of sweet sorghum under drought stress. Photosynthetica, 56 (3), pp. 861-872. https://doi.org/10.1007/s11099-017-0741-0

60. Tognolli, M., Penel, C., Greppin, H. & Simon, P. (2003). Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene, 288, pp. 129-138. https://doi.org/10.1016/S0378-1119(02)00465-1

61. Ivanov, S., Konstantinova, T., Parvanova, D., Todorova, D., Djilianov, D. & Alexieva, V. (2001). Effect of high temperatures on the growth, free proline content and some antioxidants in tobacco plants. Comptes Rendus de l'Academie Bulgare des Sciences, 54 (7), pp. 71-74.

62. Hussain, S., Khalid, M.F., Saqib, M., Ahmad, S., Zafar, W., Rao, M.J., Morillon, R. & Anjum, M.A. (2018). Drought tolerance in citrus rootstocks is associated with better antioxidant defense mechanism. Acta Physiol. Plant, 40, p. 135. https://doi.org/10.1007/s11738-018-2710-z

63. Romero-Puertas, M.C., Corpas, F.J., Sandalio, L.M., Leterrier, M., Rodríguez-Serrano, M., Del Río, L.A. & Palma, J.M. (2006). Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol., 170, pp. 432-452. https://doi.org/10.1111/j.1469-8137.2006.01643.x

64. Ozkur, O., Ozdemir, F., Bor, M. & Turkan, I. (2009). Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environ. Exp. Bot., 66(3), pp. 487-492. https://doi.org/10.1016/j.envexpbot.2009.04.003

65. Creissen, G.P., Broadbent, P., Kular, B. & Reynolds, H. (1994). Manipulation of glutathione reductase in transgenic plants: implications for plant responses to environmental stress. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences., 102B, pp. 167-175. https://doi.org/10.1017/S0269727000014081

66. Marrs, K.A. (1996). The functions and regulation of glutathione S-transferases in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol., 47, pp. 127-158. https://doi.org/10.1146/annurev.arplant.47.1.127

67. Baimuhametova, E.A., Taipova, R.M. & Kuluev, B.R. (2016). Glutathione and glutathione s-transferases: key componentsof the antioxidant protection system of plants. Biomics., 8(4), pp. 311-322 [in Russian].

68. Liu, L., Liu, Y., Rao, J., Wang, G., Li, H., Ge, F. & Chen, C. (2013). Overexpression of the glutathione S-transferase gene from Pyrus pyrifolia fruit improves tolerance to abiotic stress in transgenic tobacco plants. Mol. Biol. (Mosk.), 47(4), pp. 591-601. https://doi.org/10.1134/S0026893313040109

69. Kaur, R. & Nayyar, H. (2014). Ascorbic acid a potent defender against environmental stresses. In Ahmad P. (Ed.) Oxidative Damage to Plants Antioxidant Networks and Signaling (pp. 235-287). San Diego: Elsevier. https://doi.org/10.1016/B978-0-12-799963-0.00008-3

70. Putilina, F.E., Galkina, O.V., Yeshchenko, N.D., Dizhe, G.P. & Krasovskaya, I.E. (2008). Svobodnoradikal'noye okisleniye (Free radical oxidation). St. Petersburg: St. Petersburg University publishing house [in Russian].

71. Millar, A.H., Mittova, V., Kiddle, G., Heazlewood, J.L., Bartoli, C.G., Theodoulou, F.L. & Foyer, C.H. (2003). Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol., 133, pp. 443-447. https://doi.org/10.1104/pp.103.028399

72. Miyaji, T., Kuromori, T., Takeuchi, Y., Yamaji, N., Yokosho, K., Shimazawa, A., Sugimoto, E., Omote, H., Ma, J.F. & Shinozaki, K. (2015.) AtPHT4; 4 is a chloroplast-localized ascorbate transporter in Arabidopsis. Nat. Commun. 6:5928. https://doi.org/10.1038/ncomms6928

73. Foyer, C.H. & Noctor, G. (2005). Redox homeostis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell., 17, pp. 1866-1875. https://doi.org/10.1105/tpc.105.033589

74. Singh, S., Gupta, A. K. & Kaur, N. (2012). Differential responses of antioxidative defence system to long-term field drought in wheat (Triticum aestivum L.) genotypes differing in drought tolerance. J. Agron. Crop Sci., 198, pp. 185-195. https://doi.org/10.1111/j.1439-037X.2011.00497.x

75. Cao, B.L., Ma, Q., Zhao, Q., Wang, L. & Xu, K. (2015). Effects of silicon on absorbed light allocation, antioxidant enzymes and ultrastructure of chloroplasts in tomato leaves under simulated drought stress. Sci. Hortic., 194, pp. 53-62. https://doi.org/10.1016/j.scienta.2015.07.037

76. Le Martret, B., Poage, M., Shiel, K., Nugent, G.D. & Dix, P.J. (2011). Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol. J., 9 (6), pp. 661-673. https://doi.org/10.1111/j.1467-7652.2011.00611.x

77. Farooq, M., Irfan, M., Aziz, T., Ahmad, I. & Cheema, S.A. (2013). Seed priming with ascorbic acid improves drought resistance of wheat. J. Agron. Crop Sci., 199, pp. 12-22. https://doi.org/10.1111/j.1439-037X.2012.00521.x

78. Wang, H., Zhang, L., Ma, J., Li, X., Li, Y., Zhang, R. & Wang R. (2010). Effects of water stress on reactive oxygen species generation and protection system in rice during grain-filling stage. Agr. Sci. China, 9, pp. 633-641. https://doi.org/10.1016/S1671-2927(09)60138-3

79. Malik, S. & Ashraf, M. (2012). Exogenous application of ascorbic acid stimulates growth and photosynthesis of wheat (Triticum aestivum L.) under drought. Soil Environ., 31, pp. 72-77.

80. Baghizadeh, A. & Hajmohammadrezaei, M. (2011). Effect of drought stress and its interaction with ascorbate and salicylic acid on okra (Hibiscus esculents L.) germination and seedling growth. J. Stress Physiol. Biochem., 7, pp. 55-65.

81. Noctor, G., Gomez, L., Vanacker, H. & Foyer, C.H. (2002). Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J. Exp. Bot., 53, pp. 1283-1304. https://doi.org/10.1093/jexbot/53.372.1283

82. Szalai, G., Kellos, T., Galib, G. & Kocsy, G. (2009). Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J. Plant Growth Regul., 28, pp. 66-80. https://doi.org/10.1007/s00344-008-9075-2

83. Del Rio, L.A., Corpas, J., Sandalio, L.M., Palma, J.M., Gmez, M. & Barroso, J.B. (2002). Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J. Exp. Bot., 53, pp. 1255-1272. https://doi.org/10.1093/jxb/53.372.1255

84. Chen, K.-M., Gong, H.-J., Chen, G.-C., Wang, S.-M. & Zhang, C.-L. (2004). Gradual drought under field conditions influences the glutathione metabolism, redox balance and energy supply in spring wheat. J. Plant Growth Regul., 23, pp. 20-28. https://doi.org/10.1007/s00344-003-0053-4

85. Lascano, H.R., Antonicelli, G.E., Luna, C.M., Melchiorre, M.N., Gomez, L.D., Racca, R.W., Trippi, V.S. & Casano, L.M. (2001). Antioxidant system response of different wheat cultivars under drought: field and in vitro studies. Austr. J. Plant Physiol., 28, pp. 1095-1102. https://doi.org/10.1071/PP01061

86. Waskiewicz, A., Beszterda, M., & Golinski, P. (2014). Nonenzymatic antioxidants in plants. Oxidative Damage to Plants (pp. 201-234). Elsevier Inc. doi:10.1016/b978-0-12-799963-0.00007-1 https://doi.org/10.1016/B978-0-12-799963-0.00007-1

87. Tarakhovskiy, Yu.S., Kim, Yu.A., Abdrasilov, B.S. & Muzafarov, E.N. (2013). Flavonoids: biochemistry, biophysics, medicine. Pushchino: Snchrobook [in Russian].

88. Harborne, J.B. & Williams, C.A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55, pp. 481-504. https://doi.org/10.1016/S0031-9422(00)00235-1

89. Ververidis, F., Trantas, E., Douglas, C., Vollmer, G., Kretzschmar, G. & Panopoulos, N. (2007). Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Pt I: Chemical diversity, impacts on plant biology and human health. Biotechnol. J., 2, pp. 1214-1234. https://doi.org/10.1002/biot.200700084

90. Olenichenko, N.A., Zagoskina, N.V., Astakhova, N.V., Trunova, T.I. & Kuznetsov, Yu.V. (2008). Primary and secondary metabolism of winter wheat under cold hardening and treatment with antioxidants. Appl Biochem. Microbiol., 44 (5), pp. 535-540. https://doi.org/10.1134/S0003683808050141

91. Winkel, B.S.J. The biosynthesis of flavonoids.In Grotewold P.E. (2008). (Ed.) The science of flavonoids (pp. 71-95). New York: Springer.

92. Es-Safi, N.E., Ghidouche, S. & Ducrot, P.H. (2007). Flavonoids: hemisynthesis, reactivity, characterization and free radical scavenging activity. Molecules, 12, pp. 2228-2258. https://doi.org/10.3390/12092228

93. Khlestkina, E.K. (2013). The adaptive role of flavonoids: emphasis on cereals. Cereal Res. Commun., 41, pp. 185-198. https://doi.org/10.1556/CRC.2013.0004

94. Gould, K.S. & Lister, C. (2006). Flavonoid functions in plants. In Andersen, O.M. & Markham, K.R. (Eds.). Flavonoids: Chemistry, Biochemistry, and Applications (pp. 397-442). London: CRC Press.

95. Havaux, M. & Kloppstech, K. (2001). The protective functions of carotenoid and flavonoids pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta, 213 (6), pp. 953-966. https://doi.org/10.1007/s004250100572

96. Munne-Bosch, S. & Alegre, L. (2002). The function of tocopherols and tocotrienols in plants. Crit. Rev. Plant Sci., 21, pp. 31-57. https://doi.org/10.1080/0735-260291044179

97. Ghanbari, F. & Sayyari, M. (2018). Controlled drought stress affects the chilling-hardening capacity of tomatoseedlings as indicated by changes in phenol metabolisms, antioxidantenzymes activity, osmolytes concentration and abscisic acid accumulation. Sci. Horticult., 229, pp. 167-174. https://doi.org/10.1016/j.scienta.2017.10.009

98. Ma, D., Sun, D., Wang, C., Li, Y. & Guo, T. (2014). Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol. Biochem., 80, pp. 60-66. https://doi.org/10.1016/j.plaphy.2014.03.024

99. Kolupaev, Yu.E., Firsova, K.M., Shvidenko, M.V. & Yastreb, T.O. (2018). Hydrogen sulfide donor influence on state of antioxidant systemof wheat seedlings under osmotic stress. Fiziol. Rast. Genet., 50 (1), pp. 29-38 [in Ukrainian].

100. Nakabayashi, R., Yonekura-Sakakibara, K., Urano, K., Suzuki, M., Yamada, Y., Nishizawa, T., Matsuda, F., Kojima, M., Sakakibara, H., Shinozaki, K., Michael, A.J., Tohge, T., Yamazaki, M. & Saito, K. (2014). Enhancement of oxidative and droughttolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J., 77, pp. 367-379. https://doi.org/10.1111/tpj.12388

101. Yuan, Y., Qi, L., Yang, J., Wu, C., Liu, Y. & Huang, L. (2015). A scutellaria baicalensis R2R3-MYB gene, SbMYB8, regulatesflavonoid biosynthesis and improves drought stress tolerancein transgenic tobacco. Plant Cell Tiss. Organ. Cult., 120, pp. 961-972. https://doi.org/10.1007/s11240-014-0650-x

102. Joseph, E.A., Radhakrishnan, V.V. & Mohanan, K.V. (2015). A study onthe accumulation of proline — an osmoprotectant amino acidunder salt stress in some native rice cultivars of NorthKerala, India. Univ. J. Agr. Res., 3, pp. 15-22.

103. Kaur, G. & Asthir, B. (2015). Proline: a key player in plant abiotic stress tolerance. Biol. Plant., 59 (4), pp. 609-619. https://doi.org/10.1007/s10535-015-0549-3

104. Kumar, N.S, Zhu, W., Liang, X., Zhang, L., Demers, A.J., Zimmerman, M.C., Simpson, M.A. & Becker, D.F. (2012). Proline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death. Free Radical Biology Medicine, 53, pp. 1181-1191. https://doi.org/10.1016/j.freeradbiomed.2012.07.002

105. Signorelli, S., Coitin, O, E.L., Borsani, O. & Monza, J. (2014). Molecular mechanisms for the reaction between OH radicals and proline: insights on the role as reactive oxygenspecies scavenger in plant stress. J. Phys. Chem., 118, pp. 37-47. https://doi.org/10.1021/jp407773u

106. Aubert, S., Hennion, F., Bouchereau, A., Gout, E., Blingy, R. & Dome, A.J. (1999). Subcellular compartmentation of proline in the leaves of the subantartic Kerguelen cabbage Pringlea antiscorbutica R-Br. in vivo 13C-NMR study. Plant Cell Environ., 22, pp. 255-259. https://doi.org/10.1046/j.1365-3040.1999.00421.x

107. Chen, C. & Dickman, M.B. (2005). Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc. Natl. Acad. Sci. USA, 102, pp. 3459-3464. https://doi.org/10.1073/pnas.0407960102

108. Islam, M.M., Hoque, M.A., Okuma, E., Banu, M.N., Shimoishi, Y., Nakamura, Y. & Murata, Y. (2009). Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J. Plant Physiol., 166, pp. 1587-1597. https://doi.org/10.1016/j.jplph.2009.04.002

109. Islam, M.M., Hoque, M.A., Okuma, E., Jannat, R., Banu, M.N., Jahan, M.S., Nakamura, Y. & Murata, Y. (2009). Proline and glycinebetaine confer cadmium tolerance on tobacco bright yellow-2 cells by increasing ascorbate-glutathione cycle enzyme activities. Biosci. Biotechnol. Biochem., 73, pp. 2320-2323. https://doi.org/10.1271/bbb.90305

110. Radyukina, N.L., Shashukova, A.V., Makarova, S.S. & Kuznetsov, V.V. (2011). Exogenous proline modifies differential expression of superoxide dismutase genes in UV-B-irradiated Salvia officinalis plants. Russ. J. Plant Physiol., 58, pp. 51-59. https://doi.org/10.1134/S1021443711010122

111. Soshinkova, T.N., Radyukina, N.L., Korolkova, D.V. & Nosov, A.V. (2013). Proline and functioning of the antioxidant system in Thellungiella salsuginea plants and cultured cells subjected to oxidative stress. Russ. J. Plant Physiol., 60, pp. 41-54. https://doi.org/10.1134/S1021443713010093

112. De Ronde, J.A., Cress, W.A., Krger, G.H., Strasser, R.J. & Van,S.J. (2004). Photosynthetic response of transgenic soybean plants,containing an Arabidopsis P5CR gene, during heat anddrought stress. J. Plant Physiol., 161, pp. 1211-1224. https://doi.org/10.1016/j.jplph.2004.01.014

113. Mykhalska, S.I., Sergeeva, L.E., Matveyeva, A.Yu., Kobernik, N.I., Kochetov, A.V., Tishchenko, O.M. & Morgun, V.V. (2014). The elevation of free proline content in osmotolerant transgeniccorn plants with dsRNA suppressor of proline dehydrogenase gene. Fiziol. Rast. Genet., 46 (6), pp. 482-489 [in Russian].

114. Cherenkevich, S.N., Martinovich, G.G., Martinovich, I.V., Gorudko, I.V. & Shamova, E.V. (2013). Redox regulation of cellular activity: concepts and mechanisms. Proceedings of the National Academy of Sciences of Belarus. Series of Biological Sciences, 1, pp. 92-108 [in Russian].

115. De Campos, M.K.F., De Carvalho, K., De Souza, F.S., Marur,C.J., Pereira, L.F.P., Filho, J.C.B. & Vieira, L.G.E. (2011). Droughttolerance and antioxidant enzymatic activity in transgenic 'Swingle' citrumelo plants over-accumulating proline. Environ. Exp. Bot., 72, pp. 242-250. https://doi.org/10.1016/j.envexpbot.2011.03.009

116. Ashraf, M.A., Akbar, A., Askari, S.H., Iqbal, M., Rasheed, R. & Hussain, I. (2018). Recentadvances in abiotic stress tolerance of plants through chemicalpriming: An Overview. InRakshit, A., Singh, H.B. (Eds.) Advances in Seed Priming (pp. 51-79). Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-13-0032-5_4

117. Kamran, M., Shahbaz, M., Ashraf, M. & Akram, N.A. (2009). Alleviation of drou¬ght-induced adverse effects in springwheat (Triticum aestivum L.) using proline as a pre-sowing seed treatment. Pak. J. Bot., 41, pp. 621-632.

118. Kaur, D., Grewal, S.K., Kaur, J. & Singh, S. (2017). Differential proline metabolism in vegetative and reproductive tissues determine drought tolerance in chickpea. Biol. Plant., 61 (2), pp. 359-366. https://doi.org/10.1007/s10535-016-0695-2

119. Bohnert, H.J., Nelson, D.E. & Jensen, R.G. (1995). Adaptations to environmental stresses. Plant Cell., 7, pp. 1099-1111. https://doi.org/10.1105/tpc.7.7.1099

120. Yildizli, A., Çevik, S. & Ünyayar, S. (2018). Effects of exogenous myo-inositol on leaf water status and oxidativestress of Capsicum annuum under drought stress. Acta Physiol. Plant., 40, p. 122. https://doi.org/10.1007/s11738-018-2690-z

121. Sunkar, R., Kapoo, A. & Zhu, J.K. (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down-regulation of miR398 and important for oxidative stress tolerance. Plant Cell., 18, pp. 2051-2065. https://doi.org/10.1105/tpc.106.041673

122. Semchuk, N., Lushchak, O.V., Falk, J., Krupinska, K. & Lushchak, V.I. (2009). Inactivation of genes, encoding tocopherol biosynthetic pathway enzymes, results in oxidative stress in outdoor grown Arabidopsis thaliana. Plant Physiol. Biochem. 47, pp. 384-390. https://doi.org/10.1016/j.plaphy.2009.01.009

123. Semchuk, N.M., Vasylyk, Yu.V., Lushchak, Ok.V. & Lushchak, V.I. (2012). Effect of short-term salt stress on oxidative stress markers and antioxidant enzymes activity in tocopherol-deficient Arabidopsis thaliana plants. Ukr. Biochem. J., 84(4), pp. 41-48.

124. Szabados, L. & Savoure, A. (2009). Proline: a multifunctional amino acid. Trends Plant Sci., 15 (2), pp. 89-97. https://doi.org/10.1016/j.tplants.2009.11.009

125. Vendruscolo, E.C., Schuster, I., Pileggi, M., Scapim, C.A., Molinari, H.B., Marur, C.J. & Vieira, L.G. (2007). Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J. Plant Physiol., 164, pp. 1367-1376. https://doi.org/10.1016/j.jplph.2007.05.001

126. Razavizadeh, R. & Ehsanpour, A.A. (2009). Effects of salt stress on proline content, expressionof delta-1-pyrroline-5-carboxylate synthetase, and activitiesof catalase and ascorbate peroxidase in transgenic tobacco plants. Biological Lett., 46 (2), pp. 63-75. https://doi.org/10.2478/v10120-009-0002-4

127. Kolupaev, Yu.E. & Karpets, Yu.V. (2017). Role of signal mediators and stress hormones in regulation ofplants antioxidative system. Fiziol. Rast. Genet., 49(6), pp. 463-481 [in Russian].

128. Ozturk, L. & Demir, Y. (2002). In vivo and in vitro protective role of proline. Plant Growth Regulation, 38, pp. 259-264. https://doi.org/10.1023/A:1021579713832

129. Maiti, S., Ghosh, N.G., Mandal, C. & Adak, M.K. (2018). Evaluation of the effect of putrescine on oxidative stress in two chromium treated maize varieties. Plant Cell Biotechnol. Mol. Biol., 19 (1-2), pp. 9-23.

130. Rybachenko, L.I., Kots, S.Ya., Melnik, V.M. & Rybachenko, O.R. (2018). Response of different efficiency symbiotic systems on drought and use of the exogenous lectin as an protector of its negative action. Fiziol. Rast. Genet., 50 (5), pp. 383-401 [in Ukrainian]. https://doi.org/10.15407/frg2018.05.383

131. Hossain, M.A., Hoque, M.A., Burritt, D.J. & Fujita, M. (2014). Proline protects plants against abiotic oxidative stress: biochemical and molecular mechanisms.In Ahmad, P. (Ed.). Oxidative Damage to Plants Antioxidant Networks and Signaling (pp. 477-521). Academic Press is an imprint of Elsevier. https://doi.org/10.1016/B978-0-12-799963-0.00016-2

132. Ramel, F., Sulmon, C., Bogard, M., Coue, I. & Gouesbet, G. (2009). Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biology, 9, pp. 28. https://doi.org/10.1186/1471-2229-9-28

133. Vasil'ev, L.A., Dzyubinskaya, E.V., Kiselevsky, D.B., Shestak, A.A. & Samuilov, V.D. (2011). Programmed cell death in plants: Protective effect of mitochondrial-targeted quinones. Biochem. (Mosc.), 76 (10), pp. 1120-1131. https://doi.org/10.1134/S0006297911100051

134. Queval, G., Hager, J., Gakière, B. & Noctor, G. (2008). Why are literature data for H2O2 contents so variable? A discussion of potential difficulties in the quantitative assay of leaf extracts. J. Exp. Bot., 59, pp. 135-140. https://doi.org/10.1093/jxb/erm193