en   ru   uk  
 
 
Физиология растений и генетика 2017, том 49, № 5, 384-397, doi: https://doi.org/10.15407/frg2017.05.384

ГЕНЕТИЧНА ТРАНСФОРМАЦIЯ КУКУРУДЗИ I ПШЕНИЦI З ВИКОРИСТАННЯМ ГЕНIВ ТРАНСКРИПЦIЙНИХ ФАКТОРIВ: ДОСЯГНЕННЯ ТА ПЕРСПЕКТИВИ ДЛЯ ПРАКТИЧНОГО ЗАСТ?

Тищенко О.М., Михальська С.I., Курчій В.М., Комісаренко А.Г.

  • Інститут фізіології рослин і генетики Національної академії наук України, Київ

В огляді розглянуто досягнення і перспективи молекулярних біотехнологій, пов’язаних з підвищенням рівня стійкості кукурудзи та пшениці до стресів, спричинених водним дефіцитом, із використанням генів низки транскрипційних факторів. Показано, що, будучи стрес-індукованими, транскрипційні фактори можуть слугувати компонентами комплексних сигнальних мереж і виступати як ключові посередники процесів адаптації/ стійкості рослин. Схарактеризовано велику родину транскрипційних факторів AP2/ERF, члени якої беруть участь у реакції одно- і дводольних на стреси, спричинені водним дефіцитом, засоленням, екстремальними температурами, іонами важких металів. Показано, що АБК-залежні транскрипційні фактори AREB/ABF також можуть брати участь у підвищенні рівня стійкості пшениці і кукурудзи до абіотичних і біотичних стресорів. В огляді проаналізовано транскрипційні фактори NAC, які виконують різні функції, в тому числі беруть участь у контролі експресії генів, пов’язаних зі стійкістю рослин до стресів. Для генетичного поліпшення культурних злаків обговорено можливість використання в регуляторних мережах генів, що належать до субродини транскрипційних факторів ERF, MYB, NF-Y, bHLH-типу.

Ключові слова: corn, wheat, transcription factors, AP2/ERF, AREB/ ABF, NAC, ERF, MYB, NF-Y, bHLH-type, Opaque 2, osmotolerance, genetic transformation

Физиология растений и генетика
2017, том 49, № 5, 384-397

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Morgun, B.V. & Tishchenko, E.N. (2014). Molecular biotechnology to improve the resistance of cultivated cereals to osmotic stress. Kiev: Logos [in Russian].

2. Tishchenko, E.N. & Dubrovnaya, O.V. (2004). Epigenetic regulation. DNA methylation of plant genes and transgenes. Kiev: Logos [in Russian].

3. Tishchenko, O.M. & Mikhalska, S.I. (2017), Transcription factors NAC-subfamily in improving crop resistance to osmotic streses. Fiziol. rast. genet.,49, No. 3, pp. 211-217 [in Ukrainian].

4. Samad, A.F.A., Sajad, M., Nazaruddin, N., Fauzi, I.A., Murad, A.M.A., Zainal, Z. & Ismail, I. (2017). MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network . Front Plant Sci., 8, pp. 565. https://doi.org/10.3389/fpls.2017.00565

5. Al-Abed, D., Madasamy, P., Talla, R., Goldman, S. & Rudrabhatla, S. (2007). Genetic engineering of maize with the Arabidopsis DREB1A/CBF3 gene using split-seed explants. Crop Sci.,47, pp. 2390-2402. https://doi.org/10.2135/cropsci2006.11.0712

6. Banerjee, A. & Roychoudhury, A. (2017). Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma, 254(1), pp. 3-16. https://doi.org/10.1007/s00709-015-0920-4

7. Borsani, O., Zhu, J., Verslues, P.E., Sunkar, R. & Zhu, J-K. (2005). Endogenous siRNAs derived from a endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 123(7), pp. 1279-1291. https://doi.org/10.1016/j.cell.2005.11.035

8. Brodersen, P. & Voinne, O. (2006). The diversity of RNA silencing pathways in plants. Trends Genet., 22, No. 5, pp. 268-280. https://doi.org/10.1016/j.tig.2006.03.003

9. Egawa, C., Kobayashi, F., Ishibashi, M., Nakamura, T., Nakamura, C. & Takumi, S. (2006). Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Gen. Genet. Syst., 81, No. 2, pp. 77-91. https://doi.org/10.1266/ggs.81.77

10. Fahlgren, N., Montgomery, T.A., Howell, M.D., Allen, E., Dvorak, S.K., Alexander, A.L. & Carrington J.C. (2006). Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr. Biol., 16, pp. 939-944. https://doi.org/10.1016/j.cub.2006.03.065

11. Fujita, Y., Fujita, M., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2011). ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res., 124, pp. 509-525. https://doi.org/10.1007/s10265-011-0412-3

12. Gao, S.Q., Chen, M., Xia, L.Q., Xiu, H.J., Xu, Z.S., Li, L.C., Zhao, C.P., Cheng, X.G. & Ma, Y.Z (2009) A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep.,28, pp. 301-311. https://doi.org/10.1007/s00299-008-0623-9

13. Gao, S., Xu, H., Cheng X., Chen, M., Xu, Z., Li, L., Ye, X., Du, L. & Hao, X. (2005). Improvement of wheat drought and salt tolerance by expression of a stress inducible transcription factor GmDREB of soybean (Glycine max). Chin. Scie. Bull.,50, No. 23, pp. 2714-2723. https://doi.org/10.1360/982005-1234

14. Nelson, D.E., Repetti, P.P., Adams, T.R., Creelman, R.A., Wu, J., Warner, D. C., Anstrom, D.C., Bensen, R.J., Castiglioni, P.P., Donnarummo, M.G., Hinchey, B.S., Kumimoto, R.W., Maszle, D.R., Canales, R.D., Krolikowski, K.A., Dotson, S.B., Gutterson, N., Ratcliffe, O. J. & Heard, J. E. (2007). Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. PNAS.,104, No. 42, pp. 16450-16455. https://doi.org/10.1073/pnas.0707193104

15. Hamilton, A.J. & Baulcombe, D.C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 286, No. 5441, pp. 950-952. https://doi.org/10.1126/science.286.5441.950

16. Ito, H., Gaubert, H., Bucher, E., Mirouze, M., Vaillant, I. & Paszkowsk,i J. (2011). An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature, 472(7341), pp. 115-124. https://doi.org/10.1038/nature09861

17. Kobayashi, F., Maeta, E., Terashima, A., Kawaura, K., Ogihara, Y., Takumi, S. (2008). Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. J. Exp. Bot., 59, No. 4, pp. 891-905. https://doi.org/10.1093/jxb/ern014

18. Kobayashi, F., Maeta, E., Terashima, A. & Takumi, S. (2008). Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings. Physiol. Plant., 134, No. 1, pp. 74-86. https://doi.org/10.1111/j.1399-3054.2008.01107.x

19. Le, S.J., Park, J.H., Lee, M.H., Yu, J.H. & Kim, S.Y. (2010). Isolation and functional characterization of CE1 binding proteins. BMC Plant Biol., Dec 16; 10:277. doi: 10.1186/1471-2229-10-277. https://doi.org/10.1186/1471-2229-10-277

20. Lu, M., Ying, S., Zhang, D.F., Shi, Y.S., Song, Y.C., Wang, T.Y. & Li, Y. (2012). A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Rep., 31, No. 9, pp. 1701-1711. https://doi.org/10.1007/s00299-012-1284-2

21. Mao, X., Jia, D., Li, A., Zhang, H., Tian, S., Zhang, X., Jia, J. & Jing, R. (2011). Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Funct. Integr. Genomics.,11, No. 3, pp. 445-465. https://doi.org/10.1007/s10142-011-0218-3

22. Mirouze, M. & Paszkowski, J. (2012) Epigenetic contribution to stress adaptation in plants. Curr. Opin. Plant Biol., 14, pp. 267-274. https://doi.org/10.1016/j.pbi.2011.03.004

23. Mizoi, J., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2011). AP2/ERF family transcription factors in plant abiotic stress. Biochim. Biophys. Acta, 1819, pp. 86-96. https://doi.org/10.1016/j.bbagrm.2011.08.004

24. Morran, S., Eini, O., Pyvovarenko, T., Parent, B., Singh, R., Ismagul, A., Eliby, S., Shirley, N., Langridge, P. & Lopato, S. (2011). Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J., 9, No. 2, pp. 230-249. https://doi.org/10.1111/j.1467-7652.2010.00547.x

25. Niu, X., Helentjaris, T. & Bate, N.J. (2002). Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. Plant Cell, 14, pp. 2565-2575. https://doi.org/10.1105/tpc.003400

26. Pellegrineschi, A., Reynolds, M., Pacheco, M. Brito, R.M., Almeraya, R., Yamaguchi-Shinozaki, K. & Hoisington, D. (2004). Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome, 47(3), pp. 493-500. https://doi.org/10.1139/g03-140

27. Qin, F., Kakimoto, M., Sakuma, Y., Maruyama, K., Osakabe, Y., Tran, L.S., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2007). Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J., 50, pp. 54-69. https://doi.org/10.1111/j.1365-313X.2007.03034.x

28. Qin, F., Sakuma, Y., Li, J., Liu, Q., Li, Y.Q., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2004). Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol.,45, No. 8, pp. 1042-1052. https://doi.org/10.1093/pcp/pch118

29. Joshi, R. (2017). Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma, 254(1), pp. 3-16. doi: 10.1007/s00709-015-0920-4. Epub 2015 Dec 15. https://doi.org/10.1007/s00709-015-0920-4

30. Joshi, R., Wani, S.H., Singh, B., Bohra, A., Dar, Z.A., Lone, A.A., Pareek, A. & Singla-Pareek, S.L. (2016). Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci., 7, pp. 1029. doi: 10.3389/fpls.2016.01029 https://doi.org/10.3389/fpls.2016.01029

31. Sazegari, S. & Niaz, A. (2012). Isolation and molecular characterization of wheat (Triticum aestivum) Dehydration Responsive Element Binding Factor (DREB) isoforms. Aust. J. Crop Sci. (AJCS), 6, pp. 1037-1044.

32. Stephenson, T.J., McIntyre, C.L., Collet, C. & Xue G.P. (2007). Genome-wide identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum. Plant Mol. Biol., 65 (1-2), pp. 77-92. https://doi.org/10.1007/s11103-007-9200-9

33. Sunkar, R., Chinnusamy, V., Zhu, J. & Zhu, J.K. (2007). Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci., 12, No. 7, pp. 301-309. https://doi.org/10.1016/j.tplants.2007.05.001

34. Tang, Y., Liu, M., Gao, S. Zhang, Z., Zhao, X., Zhao, C., Zhang, F. & Chen, X. (2012). Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol. Plant., 144, No. 3, pp. 210-224. https://doi.org/10.1111/j.1399-3054.2011.01539.x

35. Tran, L.S., Nishiyama, R., Yamaguchi-Shinozaki, K. & Shinozaki, K. (2010). Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops., 1, pp. 32-39. https://doi.org/10.4161/gmcr.1.1.10569

36. Tricker, P.J., Gibbings, J.G., Rodriguez Lopez, C.M. ., Hadley, P. & Wilkinson, M.J. (2012). Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development. J. Exp. Bot.,63(10), pp. 3799-3813. https://doi.org/10.1093/jxb/ers076

37. Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K. & Shinozaki, K. (2006). Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr. Opin. Biotechnol., 17, pp. 113-122. https://doi.org/10.1016/j.copbio.2006.02.002

38. Wang, С.-T., Yang, Q. & Wang, C.-T. (2011). Isolation and functional characterization of ZmDBP2 encoding a characterization of ZmDBP2 encoding a dehydration-responsive element-binding protein in Zea mays. Plant Mol. Biol. Rep., 29, No. 1, pp. 60-68. https://doi.org/10.1007/s11105-010-0210-4

39. Wang, J.W., Yang, F.P., Chen, X.Q., Liang, R.Q., Zhang, L.Q., Geng, D.M., Zhang, X.D., Song, Y.Z. & Zhang, G.S. (2006). Induced expression of DREB transcriptional factor and study on its physiological of drought tolerance in transgenic wheat. Acta Genet. Sinica., 33, pp. 468-476. https://doi.org/10.1016/S0379-4172(06)60074-7

40. Li, W.X., Oono, Y., Zhu, J., He, X.J., Wu, J.M., Iida, K., Lu, X.Y., Cui, X., Jin, H. & Zhu, J.K.. (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell, 20, pp. 2238-2251. https://doi.org/10.1105/tpc.108.059444

41. Xie, Z. & Qi, X. (2008). Diverse small RNA-directed silencing pathways in plants. Biochim. Biophys. Acta., No. 1779(11), pp. 720-724. https://doi.org/10.1016/j.bbagrm.2008.02.009

42. Xuan, N., Jin, Y., Zhang, H. Xie, Y., Liu, Y. & Wang, G. (2011). Putative maize zinc-finger protein gene, ZmAN13, participates in abiotic stress response. Plant Cell, Tissue Organ Cult., 107, No. 1, pp. 101-112. https://doi.org/10.1007/s11240-011-9962-2

43. Xue, G.-P., Waya, H.M., Richardsonb, T., Drenth, J., Joyce, P.A. & McIntyre, C.L. (2011). Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol. Plant., 4, No. 4, pp. 697-712. https://doi.org/10.1093/mp/ssr013

44. Xu, Z.S., Xia, L.Q., Chen, M., Zhang, R.Y., Li, L.C., Zhao, Y.X., Lu, Y., Ni, Z.Y., Liu, L., Qiu, Z.G. & Ma, Y.Z. (2007). Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol. Biol, 65, No. 6, pp. 719-732. https://doi.org/10.1007/s11103-007-9237-9

45. Yamaguchi-Shinozak, K. & Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresse. Annu. Regul. Rev. Plant Biol., 57, pp. 781-803. https://doi.org/10.1146/annurev.arplant.57.032905.105444

46. Yan, F., Deng, W., Wang, X., Yang, C. & Li, Z. (2012). Maize (Zea mays L.) homoloque of ABC insencitive (ABI) 5 gene plays negative role in abiotic stresses response. Plant Grow. Regul., DOI: 0.1007/s10725-012-9727-x.

47. Yang, S., Vanderbeld, B., Wan, J. & Huang, Y. (2010). Narrowing Down the targets: towards successful. Mol. Plant., 3, No. 3, pp. 469-490. https://doi.org/10.1093/mp/ssq016

48. Yang, T., Hao, L., Yao, S, Zhao, Y., Lu, W. & Xiao, K. (2016). TabHLH1, a bHLH-type transcription factor gene in wheat, improves plant tolerance to Pi and N deprivation via regulation of nutrient transporter gene transcription and ROS homeostasis. Plant Physiol. Biochem., 104, pp. 99-113. https://doi.org/10.1016/j.plaphy.2016.03.023

49. Ying, S., Zang, D.F., Fu, J., Shi, Y.S., Song, Y.C., Wang, T.Y. & Li, Y. (2012). Cloning and characterization of maize bZIP transcriptional factors ZmbZIP72 confers enhanced salt tolerance in transgenic Arabidopsis. Planta, 235, No. 2, pp. 253-266. https://doi.org/10.1007/s00425-011-1496-7

50. Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi J., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2010). AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J., 61, pp. 672-685. https://doi.org/10.1111/j.1365-313X.2009.04092.x

51. Zhang, L., Zhao, G., Jia, J, Liu, X. & Kong, X. (2012). Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress. J. Exp. Bot., 63(1), pp. 203-214. https://doi.org/10.1093/jxb/err264

52. Zhang, L., Zhao, G., Xia, C., Jia, J., Liu, X. & Kong, X. (2012). Overexpression of a wheat MYB transcription factor gene, TaMYB56-B, enhances tolerances to freezing and salt stresses in transgenic Arabidopsis. Gene,505, No. 1, pp. 100-107. https://doi.org/10.1016/j.gene.2012.05.033

53. Zhang, S., Li, N., Gao, F., Yang, A. & Zhang, J. (2010). Over-expression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Mol. Breed., 26, No. 3, pp. 45-465. https://doi.org/10.1007/s11032-009-9385-5

54. Zhang, Y., Xu, Z.C., Ji, A.J. & Song, J.Y. (2017). Regulation of secondary metabolite biosynthesis by bZIP transcriptional factors in plants. Plant Sci. J., 35, No.1, pp.128-135.