en   ru   uk  
 
 
Физиология растений и генетика 2017, том 49, № 5, 371-383, doi: https://doi.org/10.15407/frg2017.05.371

АЗОТ ЛИСТКА: ФОТОСИНТЕЗ І РЕУТИЛІЗАЦІЯ

Кірізій Д.А.

  • Інститут фізіології рослин і генетики Національної академії наук України, Київ

В огляді наведено літературні дані і результати, отримані автором, стосовно ефективності використання азоту в процесах фотосинтетичної асиміляції СО2 і реутилізації цього елемента з вегетативних органів у насіння в ході його дозрівання. Зазначені показники обговорено із залученням даних як для модельних рослин, так і широкого спектра сільськогосподарських культур, у тому числі пшениці, та їхніх диких попередників. Показано, що культурні рослини не перевищили біологічних меж ефективності використання азоту, які спостерігаються у диких видів. Разом з тим, за даними автора, ефективність використання азоту в процесах фотосинтетичної асиміляції СО2 в листках пшениці сучасних високоінтенсивних сортів і показники реутилізації азоту в період наливання зерна вищі, ніж у менш продуктивного сорту ранішої селекції. Виявлено тісний кореляційний зв’язок між валовою кількістю в листках азоту в період цвітіння і білковістю зерна за повної стиглості. Аналіз наведених результатів підтвердив припущення про те, що процеси використання азоту при фотосинтезі та його подальшій реутилізації в насіння не повністю оптимізовані, тому існує можливість підвищення врожайності сільськогосподарських культур без зниження якості продукції шляхом поліпшення цих фізіологічних параметрів із залученням сучасних генно-інженерних, біотехнологічних і селекційних методів.

Ключові слова: photosynthesis, nitrogen, efficiency, remobilization

Физиология растений и генетика
2017, том 49, № 5, 371-383

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Gulyaev, B.I. (2003). Photosynthetic productivity of agroecosystems. Fiziologia i biokhimia kult. rastenij, 35, No. 5, pp. 371-381 [in Russian].

2. Kiriziy, D.A. (2012). Photosynthetic rate and productivity of winter wheat plants depending on the leaves nitrogen status. Fiziologia i biokhimia kult. rastenij, 44, No. 5, pp. 399-407 [in Ukrainian].

3. Kiriziy, D.A. (2013). Photosynthetic nitrogen use efficiency in wheat leaves. Fiziol. rast. genet. , 45, No. 4, pp. 296-305 [in Russian].

4. Kiriziy, D.A. (2017). Nitrogen status of leaves, photosynthesis and redistribution of nitrogen during wheat grain filling. Fiziolohiya roslyn: dosyahnennya i novi napryamky rozvytku. Kyiv: Lohos [in Ukrainian].

5. Kiriziy, D.A. & Ryzhykova, P.L. (2017). Varietal peculiarities of nitrogen remobilization from the vegetative parts of wheat shoot under different levels of mineral nutrition. Fiziol. rast. genet., 49, No. 1, pp. 15-24 [in Ukrainian].

6. Kiriziy, D.A., Stasik, O.O., Pryadkina, G.A. & Shadchina, T.M. (2014). Photosynthesis. T. 2. Assimilation of CO2 and the mechanisms of its regulation. Kyiv: Logos [in Russian].

7. Kiriziy, D.A., Stasik, O.O, Ryzhikova, P.L. & Trotsenko, V.A. (2017). Ontogenetic dynamics of gas exchange in the wheat top tier leaves. Fiziol. rast. genet., 49, No. 3, pp. 265-274 [in Ukrainian].

8. Morgun, V.V. & Kiriziy, D.A. (2012). Prospects and modern strategies of wheat physiological traits improvement for increasing productivity. Fiziologia i biokhimia kult. rastenij, 44, No. 6, pp. 463-483 [in Ukrainian].

9. Morgun V.V, Sanin Y.V. & Schwartau V.V. (2015). The club 100 centners. Winter wheat varieties of the Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine and the protection system of Syngenta. Kyiv: Logos [in Ukrainian].

10. Morgun, V.V., Stasik, O.O., Frantiichuk, V.V., Kiriziy, D.A. & Sytnyk, S.K. (2016). Analysis of relationships between the photosynthetic traits of flag leaf and the components of spike productivity in winter wheat varieties of different selection periods. Fiziol. rast. genet., 48, No. 4, pp. 356-365 [in Russian].

11. Morgun, V.V., Schwartau, V.V. & Kiriziy, D.A. (2010). Physiological basis for the formation of high productivity of cereal grains. Fiziologia i biokhimia kult. rastenij, 42, No. 5, pp. 371-392 [in Russian].

12. Pochinok, V.М. & Kiriziy, D.А. (2010). Productivity and quality of wheat grain in relation with the peculiarities of nitrogen distribution in plant. Fiziologia i biokhimia kult. rastenij, 42, No. 5, pp. 393-402 [in Ukrainian].

13. Acreche, M.M. & Slafer, G.A. (2009). Grain weight, radiation interception and use efficiency as affected by sink-strength in Mediterranean wheats released from 1940 to 2005. Field Crops Res., 110, pp. 98-105.

14. Allard, V., Martre, P. & Le Gouis, J. (2013). Genetic variability in biomass allocation to roots in wheat is mainly related to crop tillering dynamics and nitrogen status. Eur. J. Agr., 46, pp. 68-76.

15. Araus, V., Vidal, E., Puelma, T., Alamos, S., Mieulet, D., Guiderdoni, E. & Gutierrez, R.A. (2016). Members of BTB gene family of scaffold proteins sullress nitrate uptake and nitrogen use efficiency. Plant Physiol., 171, No. 2, pp. 1523-1532.

16. Archontoulis, S.V., Yin, X., Vos J., Danalatos, N.G. & Struik, P.C. (2012). Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species? J. Exp. Bot., 63, No. 2, pp. 895-911.

17. Barbottin, A., Lecomte, C., Bouchard, C. & Jeuffroy, M.H. (2005). Nitrogen remobilization during grain filling in wheat: Genotypic and environmental effects. Crop Sci., 45, No. 3, pp. 1141-1150.

18. Barraclough, P.B., Lopez-Bellido, R. & Hawkesford, M.J. (2014). Genotypic variation in the uptake, partitioning and remobilisation of nitrogen during grain-filling in wheat. Field Crops Res., 156, pp. 242-248.

19. Bertheloot, J., Martre, P. & Andrieu, B. (2008). Dynamics of light and nitrogen distribution during grain filling within wheat canopy. Plant Physiol., 148, No. 3, pp. 1707-1720.

20. Bindraban, P.S. (1999). Impact of canopy nitrogen profile in wheat on growth. Field Crops Res., 63, No. 1, pp. 63-77.

21. Blum, A. (1990). Variation among wheat cultivars in the response of leaf gas exchange to light. J. Agr. Sci., 115, pp. 305-311.

22. Bogard, M., Allard, V., Brancourt-Hulmer, M., Heumez, E., Machet, J.M., Jeuffroy, M.H., Gate, P., Martre, P. & Le Gouis J. (2010). Deviation from the grain protein concentration-grain yeild negative relationship is highly correlated to post-anthesis N uptake in winter wheat. J. Exp. Bot., 61, No. 15, pp. 4303-4312.

23. Chardon, F., Jasinski, S., Durandet, M., Lecureuil, A., Soulay, F., Bedu, M., Guerche, P. & Masclaux-Daubresse, C. (2014). QTL meta-analysis in Arabidopsis reveals an interaction between leaf senescence and resource allocation to seeds. J. Exp. Bot., 65, pp. 3949-3962.

24. Ciampitti, I.A. & Prasad, P.V.V. (2016). Historical synthesis-analysis of changes in grain nitrogen dynamics in sorghum. Front. Plant Sci., 7, 275. doi: 10.3389/fpls.2016.00275

25. Ciampitti, I.A. & Vyn, T.J. (2013). Grain nitrogen source changes over time in maize: a review. Crop Sci., 53, pp. 366-377.

26. Cormier, F., Faure, S., Dubreuil, P., Heumez, E, Beauchene, K., Lafarge, S., Praud, S. & Le Gouis, J. (2013). A multi-environmental study of recent breeding progress on nitrogen use efficiency in wheat (Triticum aestivum L.). Theor. Appl. Genet., 126, No. 12, pp. 3035-3048.

27. Diekmann, F. & Fischbeck, G. (2005). Differences in wheat cultivar response to nitrogen supply. II. Differences in N-metabolism-related traits. J. Agr. Crop Sci., 191, No. 5, pp. 362-376.

28. Distelfeld, A., Avni, R. & Fischer, A. (2014). Senescence, nutrient remobilization, and yield in wheat and barley. J. Exp. Bot., 65, pp. 3783-3798.

29. Dordas, C. (2009). Dry matter, nitrogen and phosphorus accumulation, partitioning and remobilization as affected by N and P fertilization and source-sink relations. Eur. J. Agr., 30, No. 2, pp. 129-139.

30. Evans, J.R. (1989). Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia., 78, pp. 9-19.

31. Evans, J.R. & Seemann, J.R. (1989). The allocation of protein nitrogen in the photosynthetic apparatus: costs, consequences, and control. In: Towards a Broad Understanding of Photosynthesis. New York, pp. 183-205.

32. Feller, U., Anders, I. & Mae, T. (2008). Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J. Exp. Bot., 59, No. 7, pp. 1615-1624.

33. Foulkes, M.J., Hawkesford, M.J., Barraclough, P.B., Holdsworth, M.J., Kerr, S., Kightley, S. & Shewry, P.R. (2009). Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Res., 114, No. 3, pp. 329-342.

34. Gaju, O., Allard, V., Martre, P. Le Gouis, J., Moreau, D., Bogard, M., Hubbart, S. & Foulkes, M.J. (2014). Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentrationin wheat cultivars. Field Crops Res., 155, pp. 213-223.

35. Gooding, M.J., Gregory, P.J., Ford, K.E. & Pepler, S. (2005). Fungicide and cultivar affect post-anthesis patterns of nitrogen uptake, remobilization and utilization efficiency in wheat. J. Agr. Sci. 143. pp. 503-518.

36. Gooding, M.J., Gregory, P.J., Ford, K.E. & Ruske, R.E. (2007). Recovery of nitrogen from different sources following applications to winter wheat at and after anthesis. Field Crops Res., 100, pp. 143-154.

37. Gorjanovic, B., Kraljevic-Balalic, M. & Jankovic, S. (2010). Environmental effects on associations among nitrogen use efficiency traits in wheat. Cereal Res. Communic., 38, No. 1, pp. 146-153.

38. Gregersen, P., Culetic, A., Boschian, L. & Krupinska, K. (2013). Plant senescence and crop productivity. Plant Mol. Biol., 82, pp. 603-622.

39. Han, Y.-L., Song, H.-X., Liao, Q., Yu, Y., Jian, S.-F., Lepo, J.E., Liu, Q., Rong, X.-M., Tian, C., Zeng, J., Guan, C.-Y., Ismail, A.M. & Zhang, Z.-H. (2016). Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus. Plant Physiol., 170, pp. 1684-1698.

40. Have, M., Marmagne, A., Chardon, F. & Masclaux-Daubresse, C. (2016). Nitrogen remobilisation during leaf senescence: lessons from Arabidopsis to crops. Exp. Bot., 68, No. 10, pp. 2513–2529.

41. Hikosaka, K., Handa, Y.T., Hirose, T. & Terashima, I. (1998). Photosynthetic nitrogen use efficiency in leaves of woody and herbaceous species. Funct. Ecol., 12, pp. 896-905.

42. Horton, P. (2000). Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J. Exp. Bot., 51, Special Issue, pp. 474-485.

43. Kade, M.A., Barneix, J., Olmos, S. & Dubcovsky, J. (2005). Nitrogen uptake and remobilization in tetraploid ‘Langdon’ durum wheat and a recombinant substitution line with the high grain protein gene Gpc-B1. Plant Breed., 124, No. 4, pp. 343-349.

44. Kichey, T., Hirel, B., Heumez, E., Dubois, F. & Le Gouis, J. (2007). In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crops Res., 102, pp. 22-32.

45. Kindred, D.R. & Gooding, M.J. (2004). Heterotic and seed rate effects on nitrogen efficiencies in wheat. J. Agr. Sci., 142, pp. 639-657.

46. Lawlor, D.W. (2002). Carbon and nitrogen asimilation in relation to yield: mechanisms are the key to understanding production systems. J. Exp. Bot., 53, No. 370, pp. 773-787.

47. Madani, A., Makarem, A.H., Vazin, F. & Joudi, M. (2012). The impact of post-anthesis nitrogen and water availability on yield formation of winter wheat. Plant Soil Environ., 58, No. 1, pp. 9-14.

48. Makino, A., Sakashita, H., Hidema, J., Mae, T., Ojima, K. & Osmond, B. (1992). Distinctive responses of ribulose-1,5-bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible relationships to CO2-transfer resistance. Plant Physiol., 100, No. 4, pp. 1737-1743.

49. McGrath, J.M. & Long, S.P. (2014). Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. Plant Physiol., 164, pp. 2247-2261.

50. Milla, R., Osborne, C.P., Turcotte, M.M. & Violle, C. (2015). Plant domestication through an ecological lens. Trends Ecol. Evol., 30, pp. 463-469.

51. Montemurro, F., Maiorana, A., Ferri, D. & Convertini, G. (2006). Nitrogen indicators, uptake and utilization efficiency in a maize and barley rotation cropped at different levels and sources of N fertilization. Field Crops Res., 99, pp. 114-124.

52. Muchow, R.C. & Sinclair, T.R. (1994). Nitrogen response of leaf photosynthesis and canopy radiation use efficiency in field-grown maize and sorghum. Crop Sci., 34, pp. 721-727.

53. Munier-Jolain & N.G., Salon, C. (2005). Are the carbon costs of seed production related to the quantitative and qualitative performance? An appraisal for legumes and other crops. Plant Cell Environ., 28, pp. 1388-1395.

54. Murchie, E., Pinto, M. & Horton, P. (2009). Agriculture and the new challenges for photosynthesis research. New Phytol., 181, No. 3. pp. 532-552.

55. Muurinen, S., Kleemola, J. & Peltonen-Sainio, P. (2007). Accumulation and translocation of nitrogen in spring cereal cultivars differing in nitrogen use efficiency. Agr. J., 99, No. 2, pp. 441-449.

56. Oaks, A. (1994). Efficiency of nitrogen utilization in C3 and C4 cereals. Plant Physiol., 106, pp. 407-414.

57. Ohsumi, A., Hamasaki, A., Nakagawa, H., Yoshida, H., Shiraiwa, T. & Horie, T. (2007). A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance. Ann. Bot., 99, pp. 265-273.

58. Onoda, Y., Hikosaka, K. & Hirose, T. (2004). Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct. Ecol., 18, pp. 419-425.

59. Ospina, C.A., Lammerts van Bueren, E.T., Allefs, J.J.H.M., Engel, B., van der Putten, P.E.L., Van der Linden, C.G. & Struik P.C. (2014). Diversity of crop development traits and nitrogen use efficiency among potato cultivars grown under contrasting nitrogen regimes. Euphytica., 199, pp. 13-29.

60. Oury, F.-X. & Godin, C. (2007). Yield and grain protein concentration in bread wheat: how to use the negative relationship between the two characters to identify favourable genotypes? Euphytica., 157., pp. 45-57.

61. Palmer, N.A., Donze-Reiner, T., Horvath, D., Heng-Moss, T., Waters, B., Tobias, C. & Sarath, G. (2015). Switchgrass (Panicum virgatum L.) flag leaf transcriptomes reveal molecular signatures of leaf development, senescence, and mineral dynamics. Funct. Integr. Genomics., 15, No.1, pp. 1-16.

62. Parry, M.A., Reynolds, M., Salvucci, M.E., Raines, C., Andralojc, P.J., Zhu, X.G., Price, G.D., Condon, A.G. & Furbank, R.T. (2011). Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J. Exp. Bot., 62, No. 2, pp. 453-467.

63. Pons, T.L. & Westbeek, M.H.M. (2004). Analysis of differences in photosynthetic nitrogen-use efficiency between four contrasting species. Physiol. Plant., 122, pp. 68-78.

64. Poorter, H. & Evans, J.R. (1998). Photosynthetic nitrogen use efficiency of species that differ inherently in specific leaf area. Oecologia., 116, pp. 26-37.

65. Raines, C.A. (2011). Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol., 155, pp. 36-42.

66. Reich, P.B., Ellsworth, D.S. & Walters M.B. (1998). Leaf structure (specific leaf area) modulates photosynthesis nitrogen relations evidence from within and across species and functional groups. Funct. Ecol., 12, pp. 948-958.

67. Rotundo, J.L. & Borras, L. (2016). Reduced soybean photosynthetic nitrogen use efficiency associated with evolutionary genetic bottlenecks. Funct. Plant Biol., 43, pp. 862-869.

68. Rotundo, J.L. & Cipriotti, P.A. (2017). Biological limits on nitrogen use for plant photosynthesis: a quantitative revision comparing cultivated and wild species. New Phytol., 214, No. 1, pp. 120-131. doi: 10.1111/nph.14363

69. Sage, R.F., Way, D.A. & Kubien, D.S. (2008). Rubisco, Rubisco activase, and global climate change. J. Exp. Bot., 59, No. 7, pp. 1581-1595.

70. Schiltz, S., Munier-Jolain, N., Jeudy, C., Burstin, J. & Salon, C. (2005). Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labeling throughout seed filling. Plant Physiol., 137, pp. 1463-1473.

71. Sebolt, A.M., Shoemaker, R.C. & Diers, B.W. (2000). Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci., 40, pp. 1438-1444.

72. Shi, R.L., Tong, Y.P., Jing, R.L., Zhang, F.S. & Zou, C.Q. (2013). Characterization of quantitative trait loci for grain minerals in hexaploid wheat (Triticum aestivum L.). J. Integr. Agricult., 12, No. 9, pp. 1512-1521.

73. Staswick, P.E. (1994). Storage proteins of vegetative plant-tissue. Annu. Rev. Plant Physiol. Plant Mol. Biol., 45, pp. 303-322.

74. Taulemesse, F., Gouis, J., Gouache, D., Gibon, Y. & Allard, V. (2016). Bread wheat (Triticum aestivum L.) grain protein concentration is related to early post-flowering nitrate uptake under putative control of plant satiety level. PLoS One., 11, No. 2, e0149668. doi: 10.1371/journal.pone.0149668

75. Thomas, H. (2013). Senescence, ageing and death of the whole plant. New Phytol., 197, pp. 696-711.

76. Triboi, E., Martre, P. & Girousse, C. (2006). Unravelling environmental and genetic relationships between grain yield and nitrogen concentration for wheat. Eupohean J. Agronomy., 25, No. 2, pp. 108-118.

77. Triboi, E. & Blondel, A.-M. (2002). Productivity and grain or seed composition: a new approach to an old problem. Eur. J. Agr., 16, pp. 163-186.

78. Uauy, C., Distelfeld, A., Fahima, T., Blechl, A. & Dubcovsky, J. (2006). A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science., 314, No. 5803, pp. 1298-1301.

79. Ulukan, H. 2009.The evolution of cultivated plant species: classical plant breeding versus genetic engineering. Plant Syst. Evol., 280, pp. 133-142.

80. Vaguseviciene, I., Burbulis, N., Jonytiene, V. & Vasinauskiene, R. (2012). Influence of nitrogen fertilization on winter wheat physiological parameters and productivity. J. Food Agricult. Environ., 10, No. 3-4, pp. 733-736.

81. Vos, J. & van der Putten, P.E.L. (1998). Effect of nitrogen supply on leaf growth, leaf nitrogen economy and photosynthetic capacity in potato. Field Crops Res., 59, pp. 63-72.

82. Wang, H., McCaig, T.N., DePauw, R.M. & Clarke, J.M. (2008). Flag leaf physiological traits in two high-yielding Canada Western Red Spring wheat cultivars. Can. J. Plant Sci., 88, No. 1, pp. 35-42.

83. Wang, L., Cui, F., Wang, J., Jun, L., Ding, A., Zhao, C., Li, X., Feng, D., Gao, J. & Wang, H. (2012). Conditional QTL mapping of protein content in wheat with respect to grain yield and its components. J. Genet., 91, No. 3, pp. 303-312.

84. Wang, Z.J., Wang, J.H., Zhao, C.J. (2005). Vertical distribution of nitrogen in different layers of leaf and stem and their relationship with grain quality of winter wheat. J. Plant Nutr., 28, No. 1, pp. 73-91.

85. Xu, Z.Z., Yu, Z.W., Wang, D. & Zhang, Y.L. (2005). Nitrogen accumulation and translocation for winter wheat under differenr irrigation regimes. J. Agr. Crop Sci., 191, No. 6, pp. 439-449.

86. Yang, J., Worley, E., Ma, Q., Li, J., Torres-Jerez, I., Li, G., Zhao, P.X., Xu, Y., Tang, Y. & Udvardi, M. (2016). Nitrogen remobilization and conservation, and underlying senescense-associated gene expression in the perrennial switchgrass Panicum virgatum. New Phytol., 211, No. 1, pp. 75-89.

87. Zhang, Y.-H., Sun, N.-N., Hong, J.-P., Zhang, Q., Wang, C., Xue, Q.-W., Zhou, S.-L., Huang, Q. & Wang, Z.-M. (2014). Effect of source-sink manipulation on photosynthetic characteristics of flag leaf and the remobilization of dry mass and nitrogen in vegetative organs of wheat. J. Integr. Agricult., 13, No. 8, pp. 1680-1690. https://doi.org/10.1016/S2095-3119(13)60665-6

88. Zhao, D., Derkx, A.P., Liu, D.-C., Buchner, P. & Hawkesford M. J. (2015). Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Plant Biol., 17, No. 4, pp. 904-913.