Фізіологія рослин і генетика 2021, том 53, № 2, 160-184, doi: https://doi.org/10.15407/frg2021.02.160

Фотосинтез і продуктивність: основні наукові досягнення та інноваційні розробки

Стасик О.О., Кірізій Д.А., Прядкіна Г.О.

  • Інститут фізіології рослин і генетики Національної академії наук України 03022 Київ, вул. Васильківська, 31/17

Фотосинтез становить основу продукційного процесу рослин, тому дослідження структури фотосинтетичного апарату та механізмів його функціонування і регуляції важливі для пошуку шляхів підвищення продуктивності сільсько­господарських культур. У статті узагальнено результати досліджень науковців Інституту фізіології рослин і генетики НАН України у глобальному контексті вивчення ролі фотосинтезу в продукційному процесі та формуванні врожайності сільськогосподарських культур. Показана важливість раннього періоду досліджень у формуванні методичних засад вивчення процесу фотосинтезу рослин у лабораторних і природних умовах та з урахуванням його взаєморегуляції з процесами росту і розвитку, забезпеченістю мінеральним живленням тощо, що заклав основи вітчизняної наукової школи з фізіології, біохімії та екології фотосинтезу. Висвітлено результати фундаментальних досліджень та інноваційні розробки, удостоєні Державних премій СРСР і УРСР, а також премій ім. М.Г. Холодного НАН України. На­уковцями ІФРГ НАН України комплексно схарактеризовано структурно-функціональні особливості фотосинтетичного апарату на рівнях організації від субклітинного до ценотичного та механізми регуляції в донорно-акцепторній системі рослини у сучасних сортів озимої пшениці і визначено характеристики, що можуть слугувати фізіологічними маркерами високої продуктивності і посухостійкості. Встановлено, що висока продуктивність сучасних сортів озимої пшениці забезпечується подовженою тривалістю функціонування асиміляційного апарату ценозів у репродуктивний період вегетації, підвищеною активністю фотосинтезу та ефективністю використання сонячної радіації на рівні листка і посіву, а також поліпшеною здатністю стебла депонувати фотоасиміляти з подальшим їх використанням для наливання зерна. На основі отриманих результатів сформульовано і розвинуто концепцію авторегуляції фотосинтезу і стратегії розподілу асимілятів у донорно-акцепторній системі рослин як факторів оптимізації функціонування фотосинтетичного апарату та підвищення врожайності. Результати досліджень, проведених у ІФРГ НАН України, свідчать, що для подальшого генетичного вдосконалення нових сортів озимої пшениці необхідне підвищення активності фотосинтетичного апарату на рівні листка і посіву в тісному взаємозв’язку з оптимізацією росту і розподілу біомаси між органами рослини з урахуванням онтогенетичної динаміки продукційного процесу.

Ключові слова: фотосинтез, фотодихання, Рубіско, донорно-акцепторні відносини, ефективність використання світлової енергії, продуктивність, пшениця

Фізіологія рослин і генетика
2021, том 53, № 2, 160-184

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. FAO. How to feed the world in 2050. 2009: http://www.fao.org.

2. Crist, E., Mora, C. & Engelman, R. (2017). The interaction of human population, food production, and biodiversity protection. Science, 356, pp. 260-264. https://doi.org/10.1126/science.aal2011

3. Morgun, V.V. & Pryadkina, G.A. (2014). The efficiency of photosynthesis and the prospects for increasing the productivity of winter wheat. Fiziol. rast. genet., 46, No. 4, pp. 279-301 [in Russian].

4. Stewart, B.A. & Lal, R. (2018). Increasing world average yields of cereal crops: it's all about water. Advances in Agronomy, 151, pp. 1-44. https://doi.org/10.1016/bs.agron.2018.05.001

5. Ray, D.K., Ramankutty, N., Mueller, N.D., West, P.C. & Foley, J.A. (2012). Recent patterns of crop yield growth and stagnation. Nature Communications, 3, number article: 1293. https://doi.org/10.1038/ncomms2296

6. Elbehri, A., Challinor, A., Verchot, L., Angelsen, A., Hess, T., Ouled Belgacem, A., Clark, H., Badraoui, M., Cowie, A., De Silva, S., Erickson, J., Joar Hegland, S., Iglesias, A., Inouye, D., Jarvis, A., Mansur, E., Mirzabaev, A., Montanarella, L., Murdiyarso, D., Notenbaert, A., Obersteiner, M., Paustian, K., Pennock, D., Reisinger, A., Soto, D., Soussana, J.-F., Thomas, R., Vargas, R., Van Wijk, M. & Walker, R. (2017). FAO-IPCC expert meeting in climate change, land use and food security: final meeting report. January 23-25, 2017. FAO HQ Rome. FAO and IPCC.

7. Hochman, Z., Gobbett, D.L. & Horan, H. (2017). Climate trends account for stalled wheat yields in Australia since 1990. Global Change Biology, 23, pp. 2071-2081. https://doi.org/10.1111/gcb.13604

8. Evans, J.R. & Lawson, T. (2020). From green to gold: agricultural revolution for food security. J. Exp. Bot., 71, No. 7, pp. 2211-2215. https://doi.org/10.1093/jxb/eraa110

9. Morgun, V.V. & Kiriziy, D.A. (2012). Prospects and modern strategies of wheat physiological traits improvement for increasing productivity. Physiol. biochem. cult. plants, 44 (6), pp. 463-483 [in Ukrainian].

10. Morgun, V.V. & Rybalka, O.I. (2017). Strategy of genetic improvement of cereals for the purpose of food safety, medical and preventive nutrition and needs of the processing industry. Visnyk NAN Ukrayiny, 3, pp. 54-64 [in Ukrainian]. https://doi.org/10.15407/visn2017.03.054

11. Furbank, R.T., Jimenez-Berni, J.A., George-Jaeggli, B., Potgieter, A.B. & Deery, D.M. (2019). Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops. New Phytologist, 223, pp. 1714-1727. https://doi.org/10.1111/nph.15817

12. Reynolds, M., Bonnett, D., Chapman, S.C., Furbank, R.T., Manes, Y., Mather, D.E. & Parry, M.A.J. (2011). Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J. Exp. Bot., 62, No. 2, pp. 439-452. https://doi.org/10.1093/jxb/erq311

13. Reynolds, M.P., Foulkes, J., Furbank, R., Griffiths, S., King, J., Murchie, E., Parry, M. & Slafer, G. (2012). Achieving yield gains in wheat. Plant Cell Environ., 35, No. 10, pp. 1799-1823. https://doi.org/10.1111/j.1365-3040.2012.02588.x

14. Furbank, R.T., Sharwood, R., Estavillo, G.M., Silva-Perez, V. & Condon, A.G. (2020). Photons to food: genetic improvement of cereal crop photosynthesis. J. Exp. Bot., 71, No. 7, pp. 2226-2238. https://doi.org/10.1093/jxb/eraa077

15. Zhu, X.-G. (2010). Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant. Biol., 61, pp. 235-261. https://doi.org/10.1146/annurev-arplant-042809-112206

16. Carmo-Silva, E., Scales, J.C., Madgwick, P.J. & Parry, M.A. (2015). Optimising Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ., 38, No. 9, pp. 1817-1832. https://doi.org/10.1111/pce.12425

17. Ort, D.R., Merchant, S.S., Alric, J., Barkan, A., Blankenship, R.E., Bock, R., Croce, R., Hanson, M.R., Hibberd, J.M., Long, S.P., Moore, T.A., Moroney, J., Niyogi, K.K., Parry, M.A., Peralta-Yahya, P.P., Prince, R.C., Redding, K.E., Spalding, M.H., van Wijk, K.J., Vermaas, W.F., von Caemmerer, S., Weber, A.P., Yeates, T.O., Yuan, J.S. & Zhu, X.G. (2015). Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl. Acad. Sci. USA, 112, No. 28, pp. 8529-8536. https://doi.org/10.1073/pnas.1424031112

18. Simkin, A.J., Lopez-Calcagno, P.E. & Raines, C.A. (2019). Feeding the world: improving photosynthetic efficiency for sustainable crop production photosynthesis. J. Exp. Bot., 70, No. 4, pp. 1119-1140. https://doi.org/10.1093/jxb/ery445

19. Paul, M.J., Watson, A. & Griffiths, C.A. (2020). Linking fundamental science to crop improvement through understanding source and sink traits and their integration for yield enhancement. J. Exp. Bot., 71, No. 7, pp. 2270-2280. https://doi.org/10.1093/jxb/erz480

20. Gulyaev, B.I., Ilyashuk, E.M. & Mitrofanov, B.A. (1983). Photosynthesis and production process. Kiev: Nauk. dumka [in Russian].

21. Gulyaev, B.I., Rozhko, I.I., Rogachenko, A.D. & Mitrofanov, B.A. (1989). Photosynthesis, production process and plant productivity. Kiev: Naukova dumka [in Russian].

22. Okanenko, A.S. (1923). On the question of the amount of chlorophyll in sugar beet and its significance. Byulleten sortovogo semennogo upravleniya Sakharotresta, No. 6, pp. 49-75 [in Russian].

23. Okanenko, A.S. (1954). Photosynthesis and yield. Kiev: AN URSR [in Russian].

24. Shadchina, T.M., Gulyaev, B.I., Kiriziy, D.A., Stasik, O.O., Pryadkina, G.O. & Storozhenko, V.O. (2006). Regulation of photosynthesis and productivity of plants. Physiological and ecological aspects. Kyiv: Ukrainian Phytosociological Center [in Ukrainian].

25. Kiriziy, D.A., Stasik, O.O., Pryadkina, G.A. & Shadchina, T.M. (2014). Photosynthesis. Vol. 2. Assimilation of CO2 and the mechanisms of its regulation. Kyiv: Logos [in Russian].

26. Parry, M.A.J., Andralojc, P.J., Scales, J.C., Salvucci, M.E., Carmo-Silva, A.E., Alonso, H. & Whitney, S.M. (2013). Rubisco activity and regulation as a targets for crop improvement. J. Exp. Bot., 64, No. 3, pp. 717-730. https://doi.org/10.1093/jxb/ers336

27. Tcherkez, G. (2013). Modelling the reaction mechanism of ribulose-1,5-bisphosphate carboxylase/oxygenese and consequences for kinetic parameters. Plant Cell Environ., 36, No. 9, pp. 1586-1596. https://doi.org/10.1111/pce.12066

28. Flamholz, A.I., Prywes, N., Moran, U., Davidi, D., Bar-On, Y.M., Oltrogge, L.M., Alves, R., Savage, D. & Milo, R. (2019). Revisiting trade-offs between rubisco kinetic parameters. Biochemistry, 58, pp. 3365-3376. https://doi.org/10.1021/acs.biochem.9b00237

29. Suzuki, Yu., Ohkubo, M., Hatakeyama, H., Ohashi, K., Yoshizawa, R., Kojima, S., Hayakawa, T., Yamaya, T., Mae, T. & Makino, A. (2007). Increased Rubisco content in transgenic rice transformed with the 'sense' rbcS gene. Plant Cell Physiol., 48, No. 4, pp. 626-637. https://doi.org/10.1093/pcp/pcm035

30. Suzuki, Yu., Fujimori, T., Kanno, K., Sasaki, A., Ohashi, Y. & Makino, A. (2012). Metabolome analysis of photosynthesis and the related primary metabolites in the leaves of transgenic rice plants with increased and decreased Rubisco content. Plant Cell Environ., 35, No. 8, pp. 1369-1379. https://doi.org/10.1111/j.1365-3040.2012.02494.x

31. Stasik, O.O. (2007). Analysis of internal factors of intergenotypic variability of photosynthesis intensity in the genus Triticum according to gasometric studies. Physiology and biochemistry cult. plants, 39, No. 6, pp. 488-495 [in Ukrainian].

32. Stasik, O.O. (2008). Limiting factors of CO2 photosynthetic assimilation in two contrasting yield varieties of winter wheat. Visnyk Ukr. Tov-va henetykiv i selektsioneriv, 6, No. 1, pp. 145-149 [in Ukrainian].

33. Kiriziy, D.A., Shadchyna, T.M., Stasyk, O.O., Pryadkina, G.O., Sokolovska-Sergiienko, O.G., Gulyaev, B.I. & Sytnyk, S.K. (2011). Peculiarities of photosynthesis and production process in high-intensity genotypes of winter wheat. Kyiv: Osnova [in Ukrainian].

34. Theobald, J.C., Mitchel, R.A.C., Parry, M.A.J. & Lawlor, D.W. (1998). Estimating the excess investment in ribulose-1,5-bisphosphate carboxylase/oxygenese in leaves of spring wheat grown under elevated CO2. Plant Physiol., 118, No. 3, pp. 945-955. https://doi.org/10.1104/pp.118.3.945

35. Galmes, J., Capo-Bauca, S., Niinemets, U. & Iniguez, C. (2019). Potential improvement of photosynthetic CO2 assimilation in crops by exploiting the natural variation in the temperature response of Rubisco catalytic traits. Current Opinion in Plant Biol., 49, pp. 60-67. https://doi.org/10.1016/j.pbi.2019.05.002

36. Tcherkez, G.G.B., Farquhar, G.D. & Andrews, T.J. (2006). Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc. Natl. Acad. Sci. USA, 103, No. 19, pp. 7246-7251. https://doi.org/10.1073/pnas.0600605103

37. Zhu, X.-G., Portis, A.R.Jr. & Long, S.P. (2004). Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ., 27, No. 1, pp. 155-165. https://doi.org/10.1046/j.1365-3040.2004.01142.x

38. Weber, A.P.M. & Bar-Even, A. (2019). Update: improving the efficiency of photosynthetic carbon reactions. Plant Physiol., 179, pp. 803-812. https://doi.org/10.1104/pp.18.01521

39. Walker, B.J., VanLoocke, A., Bernacchi, C.J. & Ort, D.R. (2016). The costs of photorespiration to food production now and in the future. Annu. Rev. Plant Biol., 67, pp. 107-129. https://doi.org/10.1146/annurev-arplant-043015-111709

40. Somerville, C.R. (2001). An early Arabidopsis demonstration. Resolving a few issues concerning photorespiration. Plant Physiol., 125, No. 1, pp. 20-24. https://doi.org/10.1104/pp.125.1.20

41. Stasik, O.O. (2014). Photorespiration: Metabolism and the Physiological Role. In Modern Photosynthetic Problems. Vol. 2 (pp. 505-535), Moskow-Izhevsk: Institute for Computer Research [in Russian].

42. Timm, S. & Arrivault, S. (2021). Regulation of central carbon and amino acid metabolism in plants. Plants, 10, p. 430. https://doi.org/10.3390/plants10030430

43. Stasik, O.O. (2009). The role of photorespiration in the regulation of photosynthesis, productivity and resistance of plants to abiotic stresses (Extended abstract of Doctor thesis). Institute of Plant Physiology and Genetics, Kyiv, Ukraine [in Ukrainian].

44. Stasik, O. & Jones, H.G. (2007). Response of photosynthetic apparatus to moderate high temperature in contrasting wheat cultivars at different oxygen concentrations. J. Exp. Bot., 58, No. 8, pp. 2133-2143. https://doi.org/10.1093/jxb/erm067

45. Timm, S. (2021). The impact of photorespiration on plant primary metabolism through metabolic and redox regulation. Biochem. Soc. Trans., 48, No. 6, pp. 2495-2504. https://doi.org/10.1042/BST20200055

46. Kiriziy, D.A. (2004). Photosynthesis and plant growth in terms of source-sink relationships. Kiev: Logos [in Russian].

47. Kiriziy, D.A. (2015). Photosynthesis and source-sink relations as a component of the wheat production process. Fiziol. rast. genet., 47, No. 5, pp. 393-419 [in Russian].

48. Fischer, R.A. (2008). The importance of grain or kernel number in wheat: A reply to Sinclair and Jamieson. Field Crops Res., 105, No. 1-2, pp. 15-21. https://doi.org/10.1016/j.fcr.2007.04.002

49. Ehdaie, B., Alloush, G.A. & Waines, J.G. (2008). Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crops Res., 106, No. 1, pp. 34-43. https://doi.org/10.1016/j.fcr.2007.10.012

50. Robinson, S., Warburton, K., Seymour, M., Clench, M. & Thomas-Oates, J. (2007). Localization of water-soluble carbohydrates in wheat stems using imaging matrix-assisted laser desorption ionization mass spectrometry. New Phytol., 173, No. 2, pp. 438-444. https://doi.org/10.1111/j.1469-8137.2006.01934.x

51. Madani, A., Shirani-Rad, A., Pazoki, A., Nourmohammadi, G. & Zarghami, R. (2010). Wheat (Triticum aestivum L.) grain filling and dry matter partitioning responses to source:sink modifications under postanthesis water and nitrogen deficiency. Acta Scientiarum. Agronomy, 32, No. 1, pp. 145-151. https://doi.org/10.4025/actasciagron.v32i1.6273

52. Saint Pierre, C., Trethowan, R. & Reynolds, M. (2010). Stem solidness and its relationship to water-soluble carbohydrates: association with wheat yield under water deficit. Functional Plant Biology, 37, No. 2, pp. 166-174. https://doi.org/10.1071/FP09174

53. Morgun, V.V., Priadkina, G.A. & Zborivska, O.V. (2019). Depositing ability of stem of winter wheat varieties of different period of selection. Regulatory Mechanisms in Biosystems, 10, No. 2, pp. 240-245. https://doi.org/10.15421/021936

54. Pan, J., Zhu, Y. & Cao, W.X. (2007). Modeling plant carbon flow and grain starch accumulation in wheat. Field Crop Res., 101, No. 3, pp. 276-284. https://doi.org/10.1016/j.fcr.2006.12.005

55. Alvaro, F., Royo, C., del Moral, L.F. & Villegas, D. (2008). Grain filling and dry matter translocation responses to sousce-sink modifications in a historical series of durum wheat. Crop Sci., 48, No. 4, pp. 1523-1531. https://doi.org/10.2135/cropsci2007.10.0545

56. Morgun, V.V., Priadkina, G.A. & Zborovska, O.V. (2018). Dependence of main shoot ear grain from stem deposited ability of winter wheat varieties. Ukrainian Journal of Ecology, 8, No. 3, pp. 111-116.

57. Kiriziy, D.A., Frantiychuk, V.V. & Stasik, O.O. (2015). Content of soluble carbohydrates and senescence of wheat flag leaf induced by experimental assimilates outflow interruption. Fiziol. rast. genet., 47, No. 2, pp. 136-146 [in Russian].

58. Kiriziy, D.A. (2013). Photosynthetic nitrogen use efficiency in wheat leaves. Physiology and biochemistry cult. plants, 45, No. 4, pp. 296-305 [in Russian].

59. Monteith, J.L. (1977). Climate and efficiency of crop production in Britain. Phil. Trans. R. Soc. Lond., 281, pp. 277-294. https://doi.org/10.1098/rstb.1977.0140

60. Hay, R.K.M. & Porter, J.R. (2006). The Physiology of Crop Yield. Oxford, U.K.: Blackwell Publishing Company.

61. Slattery, R.A. & Ort, D.R. (2015). Photosynthetic Energy Conversion Efficiency: Setting a Baseline for Gauging Future Improvements in Important Food and Biofuel Crops. Plant Physiol., 168, pp. 383-392. https://doi.org/10.1104/pp.15.00066

62. Sinclair, T.R. (2013). Transpiration: Moving from semi-empirical approaches to first principles. Proceedings of the Symposium Improving tools to assess climate change effects on crop response: Modeling approaches and applications (4 November 2013), Madison.

63. Reynolds, M., Foulkes, M.J., Slafer, G.A., Berry, P., Parry, M.A.J., Snape, J.W. & Angus, W.J. (2009). Raising yield potential in wheat. J. Exp. Bot., 60, No. 7, pp. 1899-1918. https://doi.org/10.1093/jxb/erp016

64. Pradhan, S., Sehgal, V.K., Bandyopadhyay, K.K., Panigrahi, P., Parihar, C.M. & Jat, S.L. (2018). Radiation interception, extinction coefficient and use efficiency of wheat crop at various irrigation and nitrogen levels in a semi-arid location. Indian J. Plant Physiol., 23, No. 3, pp. 416-425. https://doi.org/10.1007/s40502-018-0400-x

65. Priadkina, G.O., Stasik, O.O., Kapitanska, O.S., Yarmolska, O.E. & Tsukrenko, N.V. (2019). Efficiency of use of photosynthetically active radiation in winter wheat crops. Visnyk Kharkivskoho natsionalnoho ahrarnoho universytetu, No. 1, pp. 23-34 [in Ukrainian]. https://doi.org/10.35550/vbio2019.01.023

66. Chen, Y.H., Yu, S.L. & Yu, Z.W. (2003). Relationship between amount or distribution of PAR interception and grain output of wheat communities. Acta Agron. Sinica, 29, pp. 730-734.

67. Li, Q.Q., Chen, Y.H., Liu, M.Y., Xunbo, Z., Songlie, Y. & Baodi, D. (2008). Effect of irrigation and planting patterns on radiation use efficiency and yield of winter wheat in North China. Agricultural Water Management, Elsevier, 95 (4), pp. 469-476. https://doi.org/10.1016/j.agwat.2007.11.010

68. Lollato, R.P. & Edwards, J.T. (2015). Maximum Attainable Wheat Yield and Resource-Use Efficiency in the Southern Great Plains. Crop Sci., 55, pp. 2863-2876. https://doi.org/10.2135/cropsci2015.04.0215

69. Priadkina, G.A. (2012). Solar radiation use efficiency in two winter wheat varieties with contrasting grain productivity. Zemledeliye i selektsiya v Belarusi, 48, pp. 265-270 [in Russian].

70. Shearman, V.J., Sylvester-Bradley, R., Scott, R.K. & Foulkes, M.J. (2005). Physiological Processes Associated with Wheat Yield Progress in the UK. Crop Sci., 45, pp. 175-185. https://doi.org/10.2135/cropsci2005.0175

71. Chaudhary, J.L., Patel, S.R., Verma, P.K., Manikandan, N. & Khavse, R. (2016). Thermal and radiation effect studies of different wheat varieties in Chhattisgarh plains zone under rice-wheat cropping system. Mausam, 67, pp. 677-682.

72. Awal, M.A., Amin, M.R., Rhaman, M.S., Shelley, I.J. & Rahman, M.Sh. (2017). Canopy Characters and Light-Use Efficiency of Some Modern Wheat Varieties. Bangladesh. J. Agriculture and Ecology Research International, 11, No. 1, pp. 1-16. https://doi.org/10.9734/JAERI/2017/31744

73. Rawashdeh, H. & Sala, F. (2014). Influence of iron foliar fertilization on some growth and physiological parameters of wheat at two growth stages. Scientific Papers. Series A. Agronomy, LVII, pp. 306-309.

74. Amirani, D.Sh. & Kasraei, P. (2015). The effect of foliar application of microelements on phenological and physiological characteristics of Mung bean under drought stress. Int. J. Agron. and Agric. Research, 7, pp. 1-8.

75. Jung, S., Faust, F.E. & Schubert, S. (2017). Limiting physiological processes for maize growth under Mg deficiency. Proceedings of the XVIII International Plant Nutrition Colloquium (pp. 227-228), Copenhagen.

76. Verbruggen, N. & Hermans, Ch. (2013). Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil, 368, pp. 87-99. https://doi.org/10.1007/s11104-013-1589-0

77. Ma, D., Sun, D., Wang, Ch., Ding, H., Qin, H., Hou, J., Ding, H., Qin, H., Hou, J., Huang, X., Xie, Y. & Guo, T. (2017). Physiological responses and yield of wheat plants in Zinc-mediated alleviation of drought stress. Front Plant Sci., 8, pp. 1-12. https://doi.org/10.3389/fpls.2017.00860

78. Tao, Zh.-q., Wang, D.-m., Ma, Sh.-k., Yang, Y.-sh., Zhao, G.-c. & Chang, X.-H. (2018). Light interception and radiation use efficiency response to tridimensional uniform sowing in winter wheat. J. Integrative Agriculture, 17, pp. 566-578. https://doi.org/10.1016/S2095-3119(17)61715-5

79. Priadkina, G.A., Stasik, O.O., Polevoy, A.N., Yarmolskaya, E.E. & Kuzmova, K. (2020). Radiation use efficiency of winter wheat canopy during vegetative growth. Fiziol. rast. genet., 52, No. 3, pp. 208-223. https://doi.org/10.15407/frg2020.03.208

80. Cabrera-Bosquet, L., Fournier, C., Brichet, N., Welcker, C., Suard, B. & Tardieu, F. (2016). High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. New Phytologist, 212, No. 1, pp. 269-281. https://doi.org/10.1111/nph.14027

82. Leonelli, L., Erickson, E., Lyska, D. & Niyogi, K.K. (2016). Transient expression in Nicotiana benthamiana for rapid functional analysis of genes involved in non-photochemical quenching and carotenoid biosynthesis. Plant J., 88, No. 3, pp. 375-386. https://doi.org/10.1111/tpj.13268

83. Furbank, R.T., Quick, P.W. & Sirault, X.R.R. (2015). Improving photosynthesis and yield potential in cereal crops by targeted genetic manipulation: Prospects, progress and challenges. Field Crop Res., 182, pp. 19-29. https://doi.org/10.1016/j.fcr.2015.04.009

84. Ambavaram, M.M.R., Ali, A., Ryan, K.P., Peoples, O., Shell, K.D. & Somleva, M.N. (2018). Novel transcription factors PvBMY1 and PvBMY3 increase biomass yield in greenhouse-grown switchgrass (Panicum virgatum L.). Plant Sci., 273, pp. 100-109. https://doi.org/10.1016/j.plantsci.2018.04.003

85. Priadkina, G.A. (2009). Features of the reaction of xanthophylls of the violaxanthin cycle to soil drought in two varieties of winter wheat with contrasting grain productivity. Trudy Belorusskogo gosudarstvennogo universiteta, Vol. 4, Pt. 2, pp. 209-215 [in Russian].

86. Priadkina, G.O. (2011). Peculiarities of violaxanthin cycle functioning in leaves of winter wheat varieties contrasting in productivity. Physiology and biochemistry of cultivated plants, 43, No. 1, pp. 65-71 [in Ukrainian].

87. Priadkina, G.A. (2012). Changes in the donor-acceptor balance and de-epoxidation of pigments in the violaxanthin cycle of the flag leaf of winter wheat. Physiology and biochemistry of cultivated plants, 44, No. 1, pp. 58-63 [in Russian].

88. Niyogi, K.K. (1999). Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant. Physiol. Plant. Mol. Biol., 50, pp. 333-359. https://doi.org/10.1146/annurev.arplant.50.1.333

89. Priadkina, G.O. (2013). Photosynthetic pigments, solar radiation use efficiency and plant productivity in agrocenoses (Extended abstract of Doctor thesis). Institute of Plant Physiology and Genetics, Kyiv, Ukraine [in Ukrainian].