Науково обґрунтовано новий для України напрям селекції пшениці і голозерного ячменю з кольоровим (чорним, фіолетовим, синім) зерном з метою підвищення (біофортифікації) харчової (біологічної) цінності зерна цих культур. Зернові злаки є основою харчування населення світу. Стратегію біофортифікації зернових злаків сьогодні називають «другою зеленою революцією». Чорний, синій і фіолетовий колір зерна злаків зумовлюють пігменти антоціаніни і фітомеланіни, що належать до рослинних флавоноїдів, які є часткою ще більшої групи фітохімічних компонентів зерна — фенольних сполук. Антоціаніни кольорових плодів фруктів, овочів, бобових культур і кольорових зернових злаків забезпечують харчову профілактику людини до цілої низки тяжких захворювань — серцево-судинних патологій, цукрового діабету, різних форм раку, тому такі продукти стають дедалі популярнішими і вживанішими у їжу серед населення розвинутих країн. Наведено багато прикладів біохімічних, фізіологічних і клінічних досліджень пшениці та ячменю, виконаних у провідних лабораторіях світу, які доводять високу біологічну цінність кольорового зерна цих культур. Автори статті вперше в Україні створили і довели до Державного реєстру сорти чорнозерної пшениці з високою біологічною цінністю зерна і започаткували новий для України напрям селекції сортів кольорової пшениці та голозерного ячменю, які стануть основою для створення нових продуктів функціонального харчування на продовольчому ринку України. За прикладом розвинутих країн світу запропоновано розробити в Україні національну стратегію здорового (функціонального) харчування, спрямовану на максимальне (не менш як 50 %) підвищення в харчовому раціоні населення України частки продуктів із цільного зерна злаків.
Ключові слова: кольорове зерно, пшениця, ячмінь, селекція, біофортифікація, антоціаніни, антиоксиданти, функціональні харчові продукти
Повний текст та додаткові матеріали
У вільному доступі: PDFЦитована література
1. Einbond, L., Reynertson, K., Luo, X-D., Margaret J. Basile M. & Kennelly, E. (2004). Anthocyanin antioxidants from edible fruits. Food Chemistry, 84, pp. 23-28. https://doi.org/10.1016/S0308-8146(03)00162-6
2. Aguilera, Y., Duenas, M., Estrella, I., Hernándes, T., Benitez, V., Esteban, R. & Martin-Cabrejas, M. (2010). Evaluation of phenolic profile and antioxidant properties of Pardina lentil as affected by industrial dehydration. J. Agric. Food Chem., 58 (18), pp. 10101-10108. https://doi.org/10.1021/jf102222t
3. Ravichanthiran, K., Zheng Feei Ma, Hongxia Zhang, Yang Cao, Chee Woon Wang, Shahzad Muhammad, Aglago, E., Yihe Zhang, Yifan Jin & Binyu Pan. (2018). Phytochemical Profile of Brown Rice and Its Nutrigenomic Implications. Antioxidants, 7 (71), pp. 1-16. https://doi.org/10.3390/antiox7060071
4. Dykes, L. & Rooney, L. (2006). Sorghum and millet phenols and antioxidants. J. Cereal Sci., 44, pp. 236-251. https://doi.org/10.1016/j.jcs.2006.06.007
5. Fei Lao, Sigurdson, G. & Giusti, M. (2017). Health benefits of purple corn (Zea mays L.) phenolic compounds. Food Sci. and Food Safety, 16, pp. 234-246. https://doi.org/10.1111/1541-4337.12249
6. Bing Zhanga, Han Penga, Zeyuan Denga & Rong Tsao. (2018). Phytochemicals of lentil (Lens culinaris) and their antioxidant and anti-inflammatory effects. J. Food Bioact., 1, pp. 93-103. https://doi.org/10.31665/JFB.2018.1128
7. Quinde-Axtell, Z. & Baik B. (2006). Phenolic compounds of barleygrain and their implication in food product discoloration. J. Agric. Food Chem., 54, pp. 9978-9984. https://doi.org/10.1021/jf060974w
8. Garg, M., Chawla, M., Chunduri, V., Kumar, R., Sharma, S., Sharma, N., Kaur, N., Kumar, A., Mundey, J., Saini, M. & Singh, S. (2016). Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci., 71, pp. 138-144. https://doi.org/10.1016/j.jcs.2016.08.004
9. Dongyun Ma, Yaoguang Li, Jian Zhang, Chenyang Wang, Haixia Qin, Huina Ding, Yingxin Xie & Tiancai Guo. (2016). Accumulation of phenolic compounds and expression profiles of phenolic acid biosynthesis-related genes in developing grains of white, purple, and red wheat. Front. in Plant Sci., 7, pp. 1-11, article 528. https://doi.org/10.3389/fpls.2016.00528
10. Acosta-Estrada, B., Gutierrez-Uribe, J. & Serna-Saldivar, S. (2014). Bound phenolics in foods, a review. Food Chem. 152, pp. 46-55. https://doi.org/10.1016/j.foodchem.2013.11.093
11. Andersen, O. & Jordheim, M. (2006). The anthocyanins. In Flavonoids: Chemistry, Biochemistry and Applications, Andersen O.M., Markham K.R., Eds., pp. 471-552. Boca Raton, FL: CRC Press. https://doi.org/10.1201/9781420039443.ch10
12. Jacobs, D. & Steffen, L. (2003). Nutrients, foods, and dietary patterns as exposures in research: A framework for food synergy. Amer. J. Clin. Nutr., 78, pp. 508-513. https://doi.org/10.1093/ajcn/78.3.508S
13. Hock Eng Khoo, Azrina Azlan, Sou Teng Tang & See Meng Lim. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res., 61 (1). https://doi.org/10.1080/16546628.2017.1361779
14. Liu, R.H. (2004). Potential synergy of phytochemicals in cancer prevention: mechanism of action. J. Nutr., 134, pp. 3479-3485. https://doi.org/10.1093/jn/134.12.3479S
15. Liu, R.H. (2007). Whole grain phytochemicals and health. J. Cereal Sci., 46, pp. 207-219. https://doi.org/10.1016/j.jcs.2007.06.010
16. Guo, Z.F., Zhang, Z.B., Xu, P. & Guo, Y.N. (2013). Analysis of nutrient composition of purple wheat. Cereal Res. Commun., 41, pp. 293-303. https://doi.org/10.1556/CRC.2012.0037
17. Sherman, J., Souza, E., See, D. & Talbert, L.E. (2008). Microsatellite markers for kernel color genes in wheat. Crop Sci., 48, pp. 1419-1424. https://doi.org/10.2135/cropsci2007.10.0561
18. Himi, E. & Noda, K. (2004). Isolation and location of three homoeologous dihydrofavonol-4-reductase (DFR) genes of wheat and their tissue-dependent expression. J. Exp. Bot., 55, pp. 365-375. https://doi.org/10.1093/jxb/erh046
19. Sanjib Nandy, Qin Chen, Shan Cheng Sun, Faiz Ahmad, Robert Graf & Gerald Kereliuk. (2008). Nutritional analyses and their inheritance properties in colored wheat seed lines from different origins using near-infrared spectroscopy. Amer. J. Plant Sci. Biotech., 2 (2), pp. 74-79.
20. Mi-Jung Kim, Jong-Nae Hyun, Jin-Ae Kim, Jong-Chul Park, Min-Young Kim, Jung-Gon Kim, Sun-Joo Lee, Se-Chul Chun & Ill-Min Chung. (2007). Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J. Agric. Food Chem., 55, pp. 4802-4809. https://doi.org/10.1021/jf0701943
21. Zeven, A.C. (1991). Wheats with purple and blue grains - a review. Euphytica, 56, pp. 243-258. https://doi.org/10.1007/BF00042371
22. Li, Z., Mu, S., Jiang, L., Zhou, H., Wu, J. & Yu, L. (1982). A Study on blue-grained monosomic wheat. Acta Genetica Sinica, 9, pp. 431-439.
23. Zifeng Guo, Ping Xu, Zhengbin Zhang & Yunna Guo. (2012). Segregation ratios of colored grains in F1 hybrid wheat. Crop Breed. Appl. Biotechnol., 12, pp.126-131. https://doi.org/10.1590/S1984-70332012000200005
24. Caporn, A.S. (1918). On a case of permanent variation in glume length of extracted parental ypes and the inheritance of purple color in the Triticum polonicum w T. eioboni. J. Genet., 7, pp. 259-280. https://doi.org/10.1007/BF02983550
25. Sharman, B.C. (1958). Purple wheat pericarp: a monofactorial character in wheat. Nature, 181, pp. 929-932. https://doi.org/10.1038/181929a0
26. Piech, J. & Evans, L.E. (1979). Monosomic analysis of purple grain colour in hexaploid wheat. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 82, pp. 212-217.
27. Gilchrist, J. & Sorrells, M.E. (1982). Inheritance of kernel color in 'Charcoal' wheat. J. Hered., 73, pp. 457-460. https://doi.org/10.1093/oxfordjournals.jhered.a109697
28. Kuspira, J., MacLagan, J., Bhambhani, R., Sadasivaiah, R. & Kim, N.-S. (1989). Genetic and cytogenetic analysis of the A genome of Triticum monococcum L. V. Inheritance and linkage relationships of genes determining the expression of 12 qualitative characters. Genome, 32, pp. 869-881. https://doi.org/10.1139/g89-524
29. Keppenne, V. & Baenziger, P. (1990). Inheritance of the blue aleurone trait in diverse wheat crosses. Genome, 33, pp. 525-529. https://doi.org/10.1139/g90-078
30. Lan, S., Li, X. & Liu, X.P. (2008). Genetic of seed pigment of blue kernel wheat. Acta Agricult. Boreali Sinica, 23, pp. 12-14.
31. Martinek, P., Skorpik, M., Chrpova, J. & Schweiger, J. (2013). Development of the new winter wheat variety Skorpion with blue grain. Czech. J. Genet. Plant Breed., 49, pp. 90-94. https://doi.org/10.17221/7/2013-CJGPB
32. Morrison, L., Metzger, R. & Lukaszewski, A. (2004). Origin of the blue-aleurone gene in Sebesta blue wheat genetic stocks and a protocol for its use in apomixis screening. Crop Sci., 44, pp. 2063-2067. https://doi.org/10.2135/cropsci2004.2063
33. Qualset, C., Soliman, K., Jan, C., Dvorak, J., McGuire, P. & Vogt, H. (2005). Registration of UC66049 Triticum aestivum blue aleurone genetic stock. Crop Sci., 45, pp. 432-435. https://doi.org/10.2135/cropsci2005.0432
34. Zeller, E., Cermefio, M. & Miller, T. (1991). Cytological analysis on the distribution and origin of the alien chromosome pair conferring blue aleurone color in several European common wheat (Triticum aestivum L.) strains. Theor. Appl. Genet, 81, pp. 551-558. https://doi.org/10.1007/BF00219448
35. Petr Martinek, Ondrej Jirsa, Katerina Vaculova, Jana Chrpova, Nobuyoshi Watanabe, Veronika Buresova, David Kopecky, Klara Stiasna, Tomas Vyhnanek & Vaclav Trojan. (2013). Use of wheat gene resources with different grain colour in breeding. 64. Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, pp. 75-78.
36. Singh, K., Ghai, M., Garg, M., Chhuneja, P., Kaur, P., Schnurbusch, T., Keller, B. & Dhaliwal, H.S. (2007). An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum w T. monococcum RIL population. Theor. Appl. Genet., 115, pp. 301-312. https://doi.org/10.1007/s00122-007-0543-z
37. Knievel, D., Abdel-Aal, E., Rabalski, I., Nakamura, T. & Hucl, P. (2009). Grain color development and the inheritance of high anthocyanin blue aleurone and purple pericarp in spring wheat (Triticum aestivum L.). J. Cereal Sci., 50, pp. 113-120. https://doi.org/10.1016/j.jcs.2009.03.007
38. Trojan, V., Musilova, M., Vyhnanek, T., Klejdus, B., Hanacek, P. & Havel, L. (2014). Chalcone synthase expression and pigments deposition in wheat with purple and blue colored caryopsis. J. Cereal Sci., 59, pp. 48-52. https://doi.org/10.1016/j.jcs.2013.10.008
39. Abdel-Aal, E. & Hucl, P. (2003). Composition and stability of anthocyanins in blue-grained wheat. J. Agric. Food Chem., 51, pp. 2174-2179. https://doi.org/10.1021/jf021043x
40. Li, W., Shan, F., Sun, S., Corke, H. & Beta, T. (2005). Free radical scavenging properties and phenolic content of Chinese black-grained wheat. J. Agric. Food Chem., 53, pp. 8533-8538. https://doi.org/10.1021/jf051634y
41. Dubcovsky, J., Luo, M., Zhong, G., Bransteitter, R., Desai, A., Kilian, A., Kleinhofs, A. & Dvorak, J. (1966). Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics, 143, pp. 983-988.
42. Shen, Y., Shen, J., Dawadondup, Z., Wang, Y., Pu, J., Feng, Y., Chu, C., Wang, X. & Qi, Z. (2013). Physical localization of a novel blue-grained gene derived from Thinopyrum bessarabicum. Mol. Breed., 31, pp. 195-200. https://doi.org/10.1007/s11032-012-9783-y
43. Rivas-Gonzalo, J.C. (2003). Analysis of anthocyanins. In Method in Polyphenol; Santos-Buelga, C., Williamson, G., Eds.; The Royal Society of Chemistry: London, U.K., pp. 338-358.
44. Finch, R. & Simpson, E. (1978). New colors and complementary color genes in barley. Z. Pflanzenzucht, 81, pp. 40-53.
45. Shim, J. & Suh S.J. (1986). Linkage relationship of blue aleurone genes in barley. In Barley Genetics V. Proc. of the 5th Int. Barley Genet. Symp. (Yasuda S. & Konishi T., Eds). Okayama, Japan: Sanyo Press Co., pp. 213-217.
46. Furukawa, J., Yamaji, N., Wang, H., Mitani, N., Murata, Y., Sato, K., Katsuhara, M., Takeda, K. & Ma, J.F. (2007). An aluminum-activated citrate transporter in barley. Plant Cell Physiol., 48, pp. 1081-1091. https://doi.org/10.1093/pcp/pcm091
47. Rybalka, O., Morgun, B. & Polischuk, S. (2016). Barley as a product of functional nutrition. Kyiv: Logos [in Ukrainian].
48. Jia, Q., Wang, J., Zhu, J., Hua, W., Shang, Y. & Yang, J. (2017). Toward identification of black lemma and pericarp gene Blp1 in barley combining bulked segregant analysis and specific-locus amplified fragment sequencing. Front. Plant Sci., 8, p. 1414. https://doi.org/10.3389/fpls.2017.01414
49. Abdel-Aal, E., Young, J. & Rabalski, I. (2006). Anthocyanin composition in black, blue, pink, purple and red cereal grains. J. Agric. Food Chem., 54 (13), pp. 4696-704. https://doi.org/10.1021/jf0606609
50. Xiao-Wei Zhang, Qian-Tao Jiang, Yu-Ming Wei & Chunji Liu. (2017). Inheritance analysis and mapping of quantitative trait loci (QTL) controlling individual anthocyanin compounds in purple barley (Hordeum vulgare L.) grains. Plos One, 12 (8), pp. 1-12. https://doi.org/10.1371/journal.pone.0183704
51. Harlan, H.V. (2014). Some distinctions in our cultivated barleys with reference to their use in plant breeding. US Dept. Agric. Bul., 137, p. 38. https://doi.org/ 10.5962/bhl.title.109258
52. Kim, M., Hyun, J., Kim, J., Park, J., Kim, M. & Kim J. (2007). Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J. Agric. Food Chem., 55 (12), pp. 4802-4809. https://doi.org/10.1021/jf0701943
53. Siebenhandl, S., Grausgruber, H., Pellegrini, N., Del Rio, D., Fogliano, V. & Pernice, R. (2007). Phytochemical profile of main antioxidants in different fractions of purple and blue wheat, and black barley. J. Agric. Food Chem., 55 (21), pp. 8541-8547. https://doi.org/10.1021/jf072021j
54. Eticha, F., Grausgruber, H., Siebenhandl-Ehn, S. & Berghofer, E. (2011). Some agronomic and chemical traits of blue aleurone and purple pericarp wheat (Triticum aestivum L.). J. Agric. Sci. Technol., B 1, pp. 48-58.
55. Ma Dong-yun, Sun De-xiang, Zuo Yi, Wang Chen-yang, Zhu Yun-ji & Guo Tian-cai. (2013). Diversity of antioxidant content and its relationship to grain color and morphological characteristics in winter wheat grains. J. Integr. Agric., pp. 1-14. https://doi.org/ 10.1016/S2095-3119(13)60573-0
56. Yaoguang Li, Dongyun Ma, Dexiang Sun, Chenyang Wang, Jian Zhang, Yingxin Xie & Tiancai Guo. (2015). Total phenolic, flavonoid content, and antioxidant activity of flour, noodles, and steamed bread made from different colored wheat grains by three milling methods. Crop J., 3, pp. 328-334. https://doi.org/10.1016/j.cj.2015.04.004
57. Fuchs, Ch. (2015). Characterization of anthocyanins in blue aleurone and purple pericarp wheat using HPTLC. Masterthesis for obtaining a Master's degree (Diplom Ingenieurin) at the University of Natural Resources and Life Sciences, Vienna, pp. 1-55.
58. Böhmdorfern, S., Oberlerchner, J., Fuchs, C., Rosenau, T. & Grausgruber, H. (2018). Profling and quantifcation of grain anthocyanins in purple pericarpwblue aleurone wheat crosses by high-performance thin-layer chromatography and densitometry. Plant Methods, 14, pp. 1-15. https://doi.org/10.1186/s13007-018-0296-5
59. Baron, J., Siebenhandl-Ehn, S., Jaafar, S., Böhmdorfer, S., Rosenau, T. & Grausgruber, H. (2012). Purpurweizen - geht's noch bunter? Steigerung des Anthocyangehaltes in Blaukorn-wPurpurweizen Kreuzungen Increase of the total amount of anthocyanins in progenies of blue aleuronewpurple pericarp wheat crosses. 62. Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, pp. 87-90.
60. Sanjib Nandy, Qin Chen, Hi Yan Li, Faiz Ahmad, Robert Graf, Gerald Kereliuk & Shan Cheng Sun. (2009). Inheritance of grain color controlling genes in divers wheat crosses using near-infrared spectroscopy. Int. J. Plant Breed., 3 (1), pp. 52-57.
61. Dobrovolskaya, O., Arbuzova, V., Lohwasser, U., Röder, M. & Börner, A. (2006). Microsatellite mapping of complementary genes for purple grain color in bread wheat (Triticum aestivum L.). Euphytica, 150, pp. 355-363. https://doi.org/10.1007/s10681-006-9122-7
62. Rückschloss, L., Matuskova, K., Hankova, A. & Jancik, D. (2010). Influence of winter wheat with purple colour of the corn on laying hens' efficiency and eggs quality. Potravinarstvo 4 (Special Issue), pp. 231-235.
63. Syed Jaafar, S., Baron, J., Sibenhandl-Ehn, S., Rosenau, T., Böhmdorfer, S. & Grausgruber, H. (2013). Increased anthocyanin content in purple pericarp x blue aleurone wheat crosses. Plant Breed., 132, pp. 546-552. https://doi.org/10.1111/pbr.12090
64. Sharma, Sh. (2019). How purple is my roti. The Economic Times Magazine - Mumbai, pp. 18-19.
65. Khlestkina, E., Röder, M. & Börner, A. (2010). Mapping genes controlling anthocyanin pigmentation on the glume and pericarp in tetraploid wheat (Triticum durum L.). Euphytica, 171, pp. 65-69. https://doi.org/10.1007/s10681-009-9994-4
66. Buresova, V., Kopecky, D., Bartos, J., Martinek, P., Watanabe, N., Vyhnanek, T. & Dolezel, J. (2015). Variation in genome composition of blue-aleurone wheat. Theor. Appl. Genet., 128, No. 2, pp. 273-282. https://doi.org/10.1007/s00122-014-2427-3
67. Franckowiak, J., Lundqvist, U. & Konishi, T. (1997). New and revised descriptions of barley genes. Barley Genet. Newsl., 26, pp. 22-516.
68. Shoeva, O., Mock, H-P., Kukoeva, T., Börner, A. & Khlestkina, E. (2016). Regulation of the flavonoid biosynthesis pathway genes in purple and black grains of Hordeum vulgare. PLOS ONE, 11 (10) : e0163782. https://doi.org/10.1371/journal.pone.0163782
69. Zhoukai Long, Yong Jia, Cong Tan, Xiao-Qi Zhang, Tefera Angessa, Sue Broughton, Sharon Westcott, Fei Dai, Guoping Zhang, Dongfa Sun, Yanhao Xu & Chengdao Li. (2019). Genetic mapping and evolutionary analyses of the black grain trait in barley. Front. in Plant Sci., 9, pp. 1-11. https://doi.org/10.3389/fpls.2018.01921
70. Gordeeva, E., Glagoleva, A., Kukoeva, T., Khlestkina, E. & Shoeva, O. (2019). Purple-grained barley (Hordeum vulgare L.): marker-assisted development of NILs for investigating peculiarities of the anthocyanin biosynthesis regulatory network. BMC Plant Biol., 19 (1), pp. 55-57. https://doi.org/10.1186/s12870-019-1638-9
71. Havrlentova, M., Psenakova, I., Zofajova, A., Ruckschloss, L. & Kraic, J. (2014). Anthocyanins in wheat seed - a mini review. Nova Biotehnologica et Chimica, 13 (1), pp. 1-12. https://doi.org/10.2478/nbec-2014-0001
72. Sharma, S., Chunduri, V., Kumar, A., Kumar, R., Khare, P., Kiran, K., Bishnoi, M. & Garg, M. (2018). Anthocyanin bio-fortified colored wheat: Nutritional and functional characterization. PLOS ONE, 13 (4): e0194367. https://doi.org/10.1371/journal.pone.0194367
73. Sytar, O., Bosko, P., Zivcak, M., Brestic, M. & Smetanska, I. (2018). Bioactive phytochemicals and antioxidant properties of the grains and sprouts of colored wheat genotypes. Molecules, 23, p. 2282. https://doi.org/10.3390/molecules23092282
74. Karasek, F., Mrkvicova, E., Stastnik, O., Trojan, V., Vyhnanek, T., Hrivna, L. & Mrazkova, E. (2014). The influence of colored wheat Konini feeding on antioxidant activity parameters in rats. MendelNet, pp. 160-162.
75. Chen, W., Müller, D., Richling, E. & Wink, M. (2013). Anthocyanin-rich purple wheat prolongs the life span of Caenorhabditis elegans probably by activating the DAF-16/FOXO transcription factor. J. Agric. Food Chem., 61, pp. 3047-3053. https://doi.org/10.1021/jf3054643
76. Jeewani, D. & Nishantha, M. (2018). Blue wheat: genetics, healthy value and food processing. Sch. J. Agric. Vet. Sci., 5(4), pp. 230-235. https://doi.org/10.21276/sjavs.2018.5.4.7
77. Chun, O., Chung, S. & Song, W. (2007). Estimated dietary flavonoid intake and major food sources of U.S. adults. J. Nutr., 137, p. 1244-1252. https://doi.org/10.1093/jn/137.5.1244
78. Yang, M., Koo, S., Song, W. & Chun, O. (2011). Food matrix affecting anthocyanin bioavailability: review. Curr. Med. Chem., 18, pp. 291-300. https://doi.org/10.2174/092986711794088380
79. Rahman, M., Ichiyanagi, T., Komiyama, T., Hatano, Y. & Konishi, T. (2006). Superoxide radical- and peroxynitrite-scavenging activity of anthocyanins; structure-activity relationship and their synergism. Free Radic. Res., 40, pp. 993-939. https://doi.org/10.1080/10715760600815322
80. Lamy, S., Blanchette, M., Michaud-Levesque, J., Lafleur, R., Durocher, Y., Moghrabi, A., Barrette, S., Gingras, D. & Beliveau, R. (2006). Delphidin, a dietary anthocyanidin, inhibits vascular endothelial growth factor receptor-phosphorylation. Carcinogenesis, 27, pp. 989-996. https://doi.org/10.1093/carcin/bgi279
81. Hou, D., Fujii, M., Terahara, N. & Yoshimoto, M. (2004). Molecular mechanisms behind the chemo preventive effects of anthocyanidins. J. Biomed. Biotechnol., 20, pp. 321-325. https://doi.org/10.1155/S1110724304403040
82. Liu, Y., Qiu, J., Yue, Y., Li, K. & Ren, G. (2018). Dietary black-grained wheat intake improves glycemic control and inflammatory profile in patients with type 2 diabetes: a randomized controlled trial. Ther. Clin. Risk Manag., 14, pp. 247-256. https://doi.org/10.2147/TCRM.S151424
83. Idehen, E., Tang, Y. & Sang, Sh. (2017). Bioactive phytochemicals in barley. J. of Food and Drug Analysis, 25, pp. 148-161. https://doi.org/10.1016/j.jfda.2016.08.002
84. Pozniak, C., Knox, R., Clarke, F. & Clarke, J. (2007). Identification of QTL and association of phytoene synthase gene with endosperm color in durum wheat. Theor. Appl. Genet., 114, pp. 525-537. https://doi.org/10.1007/s00122-006-0453-5
85. Zhang, W. & Dubcovsky, J. (2008). Association between allelic variation at the phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor. Appl. Genet., 116, pp. 635-645. https://doi.org/10.1007/s00122-007-0697-8
86. Shipp, J. & Abdel-Aal, E.-S.M. (2010). Food applications and physiological effects of anthocyanins as functional food ingredients. Open Food Sci. J., 4, pp. 7-22. https://doi.org/10.2174/1874256401004010007
87. Reis, J., Monteiro, V., Gomes, R., Moraes do Carmo, M., Vilhena da Costa, G., Ribera, P. & Monteiro, M. (2016). Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies. J. Transl. Med., 14, pp. 1-16. https://doi.org/10.1186/s12967-016-1076-5
88. Mazza, G. (2007). Anthocyanins and heart health. Ann. 1st Super Sanita, 4, pp. 369-374.
89. Keppler, K. & Humpf, H-U. (2005). Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg. Med. Chem., 13, pp. 5195-5205. https://doi.org/10.1016/j.bmc.2005.05.003
90. Abdel-Aal, E.-S.M., Abou-Arab, A., Gamel, T., Hucl, P., Young, J. & Rabalski, I. (2008). Fractionation of blue wheat anthocyanin compounds and their contribution to antioxidant properties. J. Agric. Food Chem., 56, pp. 11171-11177. https://doi.org/10.1021/jf802168c
91. Kahkonen, M. & Heinonen, M. (2003). Antioxidant activity of anthocyanins and their aglycones. J. Agric. Food Chem., 51, pp. 628-633. https://doi.org/10.1021/jf025551i
92. Fukumoto, L. & Mazza, G. (2000). Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem., 48, pp. 3597-3604. https://doi.org/10.1021/jf000220w
93. Astadi, I., Astuti, M., Santoso, U. & Nugraheni, P. (2009). In vitro antioxidant activity of anthocyanins of black soybean seed coat in human low density lipoprotein (LDL). Food Chem., 112, pp. 659-663. https://doi.org/10.1016/j.foodchem.2008.06.034
94. DeFuria, J., Bennett, G. & Strissel, K. (2009). Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J. Nutr., 139, pp. 1-7. https://doi.org/10.3945/jn.109.105155
95. Guo, H., Ling, W. & Wang, Q. (2007). Effect of anthocyanin-rich extract from black rice (Oryza sativa L. indica) on hyperlipidemia and insulin resistance in fructose-fed rats. Plant Foods Hum. Nutr., 62, pp. 1-6. https://doi.org/10.1007/s11130-006-0031-7
96. Jayaprakasam, B., Vareed, S., Olson, L. & Nair, M. (2005). Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J. Agric. Food Chem., 53, pp. 28-31. https://doi.org/10.1021/jf049018+
97. Fimognari, C., Berti, F., Nusse, M., Cantelli-Forti, G. & Hrelia, P. (2004). Induction of apoptosis in two human leukemia cell lines as well as differentiation in human promyelocytic cells by cyanin-3-O-beta-glucopyranoside. Biochem. Pharmacol., 67, pp. 2047-2056. https://doi.org/10.1016/j.bcp.2004.02.021
98. Kang, S., Seeram, N., Nair, M. & Bourquin, L. (2003). Tart cherry anthocyanins inhibit tumor development in Apc (Min) mice and reduce proliferation of human colon cancer cells. Cancer Lett., 194, pp. 13-19. https://doi.org/10.1016/S0304-3940(02)00583-9
99. Ghosh, D. & Konishi, T. (2007). Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac. J. Clin. Nutr., 16, pp. 200-208.
100. Kalt, W., Blumberg, J. & McDonald, J. (2008). Identification of anthocyanins in the liver, eye and brain of blueberry-fed pigs. J. Agric. Food Chem., 56, pp. 705-712. https://doi.org/10.1021/jf071998l
101. Matsumoto, H., Nakamura, Y., Iida, H., Ito, K. & Ohguro, H. (2006). Comparative assessment of distribution of blackcurrant anthocyanins in rabbit and rat ocular tissues. Exp. Eye Res., 83, pp. 348-356. https://doi.org/10.1016/j.exer.2005.12.019
102. Matsumoto, M., Hara, H., Chiji, H. & Kasai T. (2004). Gastroprotective effect of red pigments in black chokeberry fruit (Aronia melanocarpa Elliot) on acute gastric hemorrhagic lesions in rats. J. Agric. Food Chem., 52, pp. 2226-2229. https://doi.org/10.1021/jf034818q
103. Morazzoni, P. & Magistretti, M. (1986). Effects of Vaccinium myrtillus anthocyanosides on postacyclin-like activity in rat arterial tissue. Fitoterapia, 57, pp. 11-14.
104. Akhmadieva, A., Zaichkina, S., Ruzieva, R. & Ganassi, E. (1993). The protective action of a natural preparation of anthocyanin (pelargonidin-3,5-diglucoside). Radiobiologiia, 33, pp. 433-435 [in Russian].
105. Herrero, J. & Frutos, M. (2014). Effect of concentrated plum juice on physicochemical and sensory properties of yoghurt made at bench-top calve. Int. J. Dairy Technol., 67, pp. 123-128. https://doi.org/10.1111/1471-0307.12101
106. Bueno, J., Plaza, S., Escudero, R., Jimenez, A., Fett, R. & Asuero, A. (2012). Analysis and antioxidant capacity of anthocyanin pigments. Pt II: chemical structure, color, and intake of anthocyanins. Critical Reviews in Analytical Chemistry, 42, pp. 126-151. https://doi.org/10.1080/10408347.2011.632314
107. Li, W. & Beta, T. (2011). Evaluation of antioxidant capacity and aroma quality of anthograin liqueur. Food Chem., 127, pp. 968-972. https://doi.org/10.1016/j.foodchem.2011.01.066
108. Skrede, G., Wrolstad, R. & Durst, R. (2000). Changes in anthocyanins and polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.). J. Food Sci., 65, pp. 357-364. https://doi.org/10.1111/j.1365-2621.2000.tb16007.x
109. Bezar, J. (1982). Konini, specialty bread wheat. N.Z. Wheat Rev., 15, pp. 62-63.
110. Fardet, A. (2010). New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutrition Research Reviews, 23, pp. 65-134. https://doi.org/10.1017/S0954422410000041
111. Truswell, A. (2002). Cereal grains and coronary heart disease. Eur. J. Clin. Nutr., 56, pp. 1-14. https://doi.org/10.1038/sj.ejcn.1601283
112. JHCI (Joint Health Claims Initiative). (2002). Generic health claim for wholegrain foods and heart health. https://www.jhci.org.uk/approv/wgrainh.htm
113. FDA (Food and Drug Administration). (1999). Health Claim Notification for Whole Grain Foods.
114. SNF (Swedish Nutrition Foundation). (2004). Health claims in the labelling and marketing of food products. The food sector's code of practice.
115. Mejborn, H., Biltoft-Jensen, A., Trolle, E. & Tetens, I. (2008). Fuldkorn. Definition og vidensgrundlag for anbefaling af fuldkornsindtag i Danmark [Wholegrain. Definition and scientific background for recommendations of wholegrain intake in Denmark]. Copenhagen, Denmark: Fodevareinstituttet, DTU, 103 p.
116. Deutsches Lebensmittelbuch. (1993). Leitsätze für Brot und Kleingebäck.
117. 2030www.efsa.europa.eu/efsajournal6. EFSA Journal, 2019, 17 (7): e170622.
118. Prokop, J., Anzenbacherb, P., Mrkvicova, E., Pavlata, L., Zapletalova, I., Stastnik, O., Martinek, P., Kosina, P. & Anzenbacherova, E. (2018). In vivo evaluation of effect of anthocyanin-rich wheat on rat liver microsomal drug-metabolizing cytochromes P450 and on biochemical and antioxidant parameters in rats. Food and Chem. Toxicol., 122, pp. 225-233. https://doi.org/10.1016/j.fct.2018.10.029
119. Stastnik, O., Mrkvicova, E., Pavlata, L., Juzl, M., Roztocilova, A., Roman Pytel, R., Vyhnanek, T. & Martinek, P. (2018). Influence of feeding colored wheat varieties on selected quality parameters of broiler chicken's meat. Potravinarstvo Slovak Journal of Food Sci., 12, (1), pp. 729-734. https://doi.org/10.5219/986
120. Roztocilova, A., Stastnik, O., Mrkvicova, E. & Pavlata, L. (2018). Effect of purple wheat RU 687-12 on performance parameters of laying hens at the end of lay. In NutriNet, pp. 92-97.