Фізіологія рослин і генетика 2017, том 49, № 1, 15-24, doi: https://doi.org/10.15407/frg2017.01.015

Сортові особливості реутилізації азоту з вегетативних частин пагона пшениці за різного рівня мінерального  живлення

Кірізій Д.А., Рижикова П.Л.

  • Інститут фізіології рослин і генетики Національної академії наук України 03022 Київ, вул. Васильківська, 31/17

Растения озимой пшеницы трех сортов (Фаворитка, Смуглянка, Мироновская 808) выращивали в вегетационном опыте на двух фонах минерального питания: N160P160K160 и N32P32K32 мг/кг почвы. В фазы цветения и полной спелости определяли массу сухого ве­щества органов главного побега, содержание в нем азота, элементы зерновой продуктивности, содержание азота в зерне. По полученным данным рассчитаны коэффициенты реутилизации азота в период налива зерна для целого побега и отдельных его частей. Показано, что у растений озимой пшеницы новых высокоинтенсивных сортов Фаворитка и Смуглянка эффективность реутилизации азота из вегетативных частей побега в зерно выше, чем у сорта Мироновская 808. При пониженном уровне минерального питания коэффициенты реутилизации были меньше, однако новые сорта сохраняли преимущество по этому показателю. При высоком фоне минерального питания растения сортов Фаворитка и Смуглянка лучше использовали резервный азот стебля, чем растения сорта Мироновская 808.

Ключові слова: Triticum aestivum L., wheat, mineral nutrition, nitrogen, remobilization

Фізіологія рослин і генетика
2017, том 49, № 1, 15-24

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Kiriziy, D.A., Stasik, O.O., Pryadkina, G.A. & Shadchina, T.M. (2014). Photosynthesis. Vol. 2. Assimilation of CO2 and the mechanisms of its regulation. Kyiv: Logos [in Russian].

2. Morgun, V.V., Sanin, Y.V. & Schwartau, V.V. (2015). The club 100 centners. Kyiv: Logos [in Ukrainian].

3. Morgun, V.V., Schwartau, V.V. & Kiriziy, D.A. (2010). Physiological fundamentals of grain cereals high productivity forming. Fiziol. biokhim. kult. rast., 42, No. 5, pp. 371-392 [in Russian].

4. Pavlov, A.N. (1982). Physiological factors that determine the level of protein accumulation in the grain of different wheat genotypes. Plant Physiology, 24, No. 4, pp. 767-780 [in Russian].

5. Pochinok, V.M. & Kirizy, D.A. (2010). Productivity and quality of wheat grain in relation with the peculiarities of nitrogen distribution in plant. Fiziol. biokhim. kult. rast., 42, No. 5, pp. 393-402 [in Ukrainian].

6. Pochinok, Kh.N. (1976). Methods of biochemical analysis of plants. Kyiv: Nauk. Dumka [in Russian].

7. Allard, V., Martre, P. & Gouis, J. (2013). Genetic variability in biomass allocation to roots in wheat is mainly related to crop tillering dynamics and nitrogen status. Eur. J. Agr., 46, pp. 68-76. https://doi.org/10.1016/j.eja.2012.12.004

8. Aranjuelo, I., Cabrera-Bosquet, L., Araus, J.L. & Nogues, S. (2013). Carbon and nitrogen partitioning during the post-anthesis period is conditioned by N fertilisation and sink strength in three cereals. Plant Biol., 15, No. 1, pp. 135-143. https://doi.org/10.1111/j.1438-8677.2012.00593.x

9. Barbottin, A., Lecomte, C., Bouchard, C. & Jeuffroy, M.H. (2005). Nitrogen remobilization during grain filling in wheat: Genotypic and environmental effects. Crop Sci., 45, No. 3, pp. 1141-1150. https://doi.org/10.2135/cropsci2003.0361

10. Barraclough, P.B., Lopez-Bellido, R. & Hawkesford, M.J. (2014). Genotypic variation in the uptake, partitioning and remobilisation of nitrogen during grain-filling in wheat. Field Crops Res., 156, pp. 242-248. https://doi.org/10.1016/j.fcr.2013.10.004

11. Bertheloot, J., Andrieu, B., Fournier, C. & Martre, P. (2008). A process-based model to simulate nitrogen distribution in wheat (Triticum aestivum) during grain-filling. Funct. Plant Biol., 35, No. 9-10, pp. 781-796. https://doi.org/10.1071/FP08064

12. Bertheloot, J., Martre, P. & Andrieu, B. (2008). Dynamics of light and nitrogen distribution during grain filling within wheat canopy. Plant Physiol., 148, No. 3, pp. 1707-1720. https://doi.org/10.1104/pp.108.124156

13. Cormier, F., Faure, S., Dubreuil, P. Heumez, E., Beauchene, K., Lafarge, S., Praud, S. & Le Gouis, J. (2013). A multi-environmental study of recent breeding progress on nitrogen use efficiency in wheat (Triticum aestivum L.). Theor. Appl. Genet., 126, No. 12, pp. 3035-3048. https://doi.org/10.1007/s00122-013-2191-9

14. Diekmann, F. & Fischbeck, G. (2005). Differences in wheat cultivar response to nitrogen supply. II. Differences in N-metabolism-related traits. J. Agr. Crop Sci., 191, No. 5, pp. 362-376. https://doi.org/10.1111/j.1439-037X.2005.00166.x

15. Dordas, C. (2009). Dry matter, nitrogen and phosphorus accumulation, partitioning and remobilization as affected by N and P fertilization and source-sink relations. Eur. J. Agr., 30, No. 2, pp. 129-139. https://doi.org/10.1016/j.eja.2008.09.001

16. Gaju, O., Allard, V., Martre, P. Le Gouis, J., Moreau, D., Bogard, M., Hubbart, S. & Foulkes, M.J. (2014). Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars. Field Crops Res., 155, pp. 213-223. https://doi.org/10.1016/j.fcr.2013.09.003

17. Gooding, M.J., Gregory, P.J., Ford, K.E. & Pepler, S. (2005). Fungicide and cultivar affect post-anthesis patterns of nitrogen uptake, remobilization and utilization efficiency in wheat. J. Agr. Sci., 143, pp. 503-518. https://doi.org/10.1017/S002185960500568X

18. Kade, M.A., Barneix, J., Olmos, S. & Dubcovsky, J. (2005). Nitrogen uptake and remobilization in tetraploid 'Langdon' durum wheat and a recombinant substitution line with the high grain protein gene Gpc-B1. Plant Breed., 124, No. 4, pp. 343-349. https://doi.org/10.1111/j.1439-0523.2005.01110.x

19. Kindred, D.R. & Gooding, M.J. (2004). Heterotic and seed rate effects on nitrogen efficiencies in wheat. J. Agr. Sci., 142, pp. 639-657. https://doi.org/10.1017/S0021859605004843

20. Kong, L.G., Wang, F.H. & Zhang, R.T. (2012). High nitrogen rate inhibits proteolysis and decreases the export of leaf pre-stored proteins to grains in wheat (Triticum aestivum). Int. J. Agr. Biol., 14, No. 6, pp. 1009-1013.

21. Muurinen, S., Kleemola, J. & Peltonen-Sainio, P. (2007). Accumulation and translocation of nitrogen in spring cereal cultivars differing in nitrogen use efficiency. Agr. J., 99, No. 2, pp. 441-449. https://doi.org/10.2134/agronj2006.0107

22. Shi, R.L., Tong, Y.P., Jing, R.L. Zhang, F. & Zou, C. (2013). Characterization of quantitative trait loci for grain minerals in hexaploid wheat (Triticum aestivum L.). J. Integr. Agricult., 12, No. 9, pp. 1512-1521. https://doi.org/10.1016/S2095-3119(13)60559-6

23. Triboi, E., Martre, P. & Girousse, C. (2006). Unravelling environmental and genetic relationships between grain yield and nitrogen concentration for wheat. Eur. J. Agr., 25, No. 2, pp. 108-118. https://doi.org/10.1016/j.eja.2006.04.004

24. Vaguseviciene, I., Burbulis, N., Jonytiene, V. & Vasinauskiene, R. (2012). Influence of nitrogen fertilization on winter wheat physiological parameters and productivity. J. Food Agricult. Environ., 10, No. 3-4, pp. 733-736.

25. Wang, H., McCaig, T.N., DePauw, R.M. & Clarke, J.M. (2008). Flag leaf physiological traits in two high-yielding Canada Western Red Spring wheat cultivars. Can. J. Plant Sci., 88, No. 1, pp. 35-42. https://doi.org/10.4141/CJPS07055

26. Wang, Z.J., Wang, J.H. & Zhao, C.J. (2005). Vertical distribution of nitrogen in different layers of leaf and stem and their relationship with grain quality of winter wheat. J. Plant Nutr., 28, No. 1, pp. 73-91. https://doi.org/10.1081/PLN-200042175

27. Xu, Z.Z., Yu, Z.W., Wang, D. & Zhang, Y.L. (2005). Nitrogen accumulation and translocation for winter wheat under different irrigation regimes. J. Agr. Crop Sci., 191, No. 6, pp. 439-449. https://doi.org/10.1111/j.1439-037X.2005.00178.x

28. Zhang, Y.-H., Sun, N.-N., Hong, J.-P., Zhang, Q., Wang, C., Xue, Q.-W., Zhou, S.-L., Huang, Q. & Wang, Z.-M. (2014). Effect of source-sink manipulation on photosynthetic characteristics of flag leaf and the remobilization of dry mass and nitrogen in vegetative organs of wheat. J. Integr. Agricult., 13, No. 8, pp. 1680-1690. https://doi.org/10.1016/S2095-3119(13)60665-6