В огляді на прикладі модельного організму — одноклітинної зеленої водорості Chlamydomonas reinhardtii висвітлено основні досягнення останніх десятиліть у вивченні механізмів накопичення нейтральних ліпідів, у тому числі триацилгліцеролів (ТАГ), у клітинах мікроводоростей у відповідь на стрес. Водорості розглянуто як перспективну сировину для виробництва біопалива третього і четвертого поколінь. Схарактеризовано чинники, які позитивно впливають на акумуляцію нейтральних ліпідів у клітинах С. reinhardtii, описано структуру, біохімічний склад та фізіологічну роль внутрішньоклітинних ліпідних включень, наведено властивості мутантних штамів, здатних накопичувати підвищені кількості ТАГ.
Ключові слова: Chlamydomonas reinhardtii, триацилгліцероли, запасні ліпіди, жирні кислоти, ліпідні включення, біодизель
Повний текст та додаткові матеріали
У вільному доступі: PDFЦитована література
1. Zolotarova, O.K., Shnyukova, E.I., Sivash, O.O. & Mihaylenko, N.F. (2008). Prospects for the use of microalgae in biotechnology. Kyiv: Alterpres [in Ukrainian].
2. Zolotarova, O.K. & Shnyukova, E.I. (2010). Where does the biofuel industry go? Visnyk NAN Ukrainy, No. 4, pp. 10-20 [in Ukrainian].
3. Syvash, O.O., Mihaylenko, N.F. & Zolotarova, O.K. (2001). Sugars as a key link in the regulation of the metabolism of photosynthetic cells. Ukrayinskiy botanichniy zhurnal, 58, No. 3, pp. 121-127 [in Ukrainian].
4. Solovchenko, A.E. (2012). Physiological role of accumulation of neutral lipids in eukaryotic microalgae under stress. Plant Physiology, 59, pp. 192-202 [in Russian].
5. Stepanov, S.S. & Zolotarova, O.K. (2011). Metabolic pathway of methanol in plants. Ukrayinskiy biohimichniy zhurnal, 83, No. 4, pp. 5-15 [in Ukrainian].
6. Austin, J.R., Frost, E., Vada, A., Kessler, F. & Staehelin, L.A. (2006). Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell, 18, pp. 1693-1703. https://doi.org/10.1105/tpc.105.039859
7. Ball, S., Marianne, T., Dirick, L., Fresnoy, M., Delrue, B. & Desq, A. (1991). Chlamydomonas reinhardtii low-starch mutant is defective for 3-phosphoglycerate activation and orthophosphate inhibition of ADP-glucose pyrophosporylase. Planta, 185 (1), pp. 17-26.
8. Brehelin, C., Kessler, F. & van Wijk, K.J. (2007). Plastoglobules: versatile lipoprotein particles in plastids. Trends in Plant Science, 12, pp. 260-266. https://doi.org/10.1016/j.tplants.2007.04.003
9. Brett, M. & Muller, N.D. (1997). The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology, 38 (3), pp. 483-499. https://doi.org/10.1046/j.1365-2427.1997.00220.x
10. Brown, L.M. & Zeiler, K.G. (1993). Aquatic biomass and carbon dioxide trapping. Energy Conversion Management, 34, pp. 1005-1013. https://doi.org/10.1016/0196-8904(93)90048-F
11. Cakmak, T., Angun, P., Ozkan, A.D., Cakmak, Z., Olmez, T.T. & Tekinay, T. (2012). Nitrogen and sulfur deprivation differentiate lipid accumulation targets of Chlamydomonas reinhardtii. Bioengineered Bugs, 3, pp. 343-346. https://doi.org/10.4161/bioe.21427
12. Cardozo, K.H.M., Guaratini, T., Barros, M.P., Falcao, V.R., Tonon, A.P., Lopez, N.P., Campos, S., Torres, M.A., Souza, A.O., Colepicolo, P. & Pinto, E. (2007). Metabolites from algae with economical impact. Comp. Biochem. Physiol. C.: Toxicol. Pharmacol., 146, pp. 60-78. https://doi.org/10.1016/j.cbpc.2006.05.007
13. Chisti, Y. (2007). Biodisel from microalgae. Biotechnology Advances, 25, pp. 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
14. Deng, X.D., Li, Y.J. & Fei, X.W. (2009). Microalgae: A promising feedstock for biodiesel. African Journal of Microbiology Research, 3, pp. 1008-1014.
15. Deng, X., Fei, X. & Li, Y. (2011). The effects of nutritional restriction on neutral lipid accumulation in Chlamydomonas and Chlorella. African Journal of Microbiology Research, 5, pp. 260-270.
16. Docampo, R., Ulrich, P. & Moreno, S.N.J. (2010). Evolution of acidocalcisomes and their role in polyphosphate storage and osmoregulation in eukaryotic microbes. Philosophical Transactions of the Royal Society B, 365, pp. 775-784 https://doi.org/10.1098/rstb.2009.0179
17. Fahy, E., Subramaniam, S., Brown, H.A., Glass, C.K., Merrill, A.H., Murphy, R.C., Raetz, C.R., Russell, D.W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., van Meer, G., VanNieuwenhze, M.S., White, S.H., Witztum, J.L. & Dennis, E.A. (2005). A comprehensive classification system for lipids. Journal of Lipid Research, 46, pp. 839-862. https://doi.org/10.1194/jlr.E400004-JLR200
18. Fan, J., Yan, C., Andre, C., Shanklin, J., Schwender, J. & Xu, C. (2012). Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiology, 53 (8), pp. 1380-1390. https://doi.org/10.1093/pcp/pcs082
19. Fan, Y. & Chapkin, R. (1998). Importance of dietary г-linolenic acid in human health and nutrition. Journal of Nutrition, 128, pp. 1411-1414. https://doi.org/10.1093/jn/128.9.1411
20. Froissard, M., D'andre'a, S., Boulard, C. & Chardot, T. (2009). Heterologous expression of AtClo1, a plant oil body protein, induces lipid accumulation in yeast. FEMS Yeast Research, 9, pp. 428-438. https://doi.org/10.1111/j.1567-1364.2009.00483.x
21. Fujimoto, T. & Ohsaki, Y. (2006). Cytoplasmic lipid droplets. Rediscovery of an old structure as a unique platform. Annals of the New York Academy Sciences, 1086, pp. 104-115.
22. Goodson, C., Roth, R., Wang, Z.T. & Goodenough, U. (2011). Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryotic Cell, 10 (12), pp. 1592-1606. https://doi.org/10.1128/EC.05242-11
23. Grossman, A.R. (2000). Chlamydomonas reinhardtii and photosynthesis: genetics to genomics Current Opinion in Plant Biology, 3, pp.132-137.
24. Guschina, I.A. & Harwood, J.L. (Eds.) (2009). Algal lipids and effect of the environment on their biochemistry. Lipids in Aquatic Ecosystems. Dordrecht; Heidelberg; London; New York: Springer-Verlag.
25. Guschina, I.A. & Harwood, J.L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45, pp. 160-186. https://doi.org/10.1016/j.plipres.2006.01.001
26. Hansen, J., Sshade, D. & Harris, C. (1997). Docosahexaenoic acid plus arachidonic acid enhance preterm infant growth. Prostaglandins Leukotrienes and Essential Fatty Acids, 57, p. 196.
27. Harwood, J.L. & Jones, A.L. (1989). Lipid metabolism in algae. Advances in Botanical Research, 16, pp. 1-53. https://doi.org/10.1016/S0065-2296(08)60238-4
28. Harwood, J.L. & Scrimgeour, C.M. (Eds.) (2007). Fatty acid and lipid structure. The Lipid Handbook. Boca Raton: Taylor and Francis Group, CRC Press.
29. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant Journal, 54, pp. 621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
30. Kessler, F. & Vidi, P.A.(2007). Plastoglobule lipid bodies: their functions in chloroplasts and their potential for applications. Advances in Biochemical Engineering Biotechnology, 107, pp. 153-172. https://doi.org/10.1007/10_2007_054
31. Kim, S., Kim, H., Ko, D., Yamaoka, Y., Otsuru, M., Kawai-Yamada, M., Ishikawa, T., Oh, H.M., Nishida, I., Li-Beisson, Y. & Lee, Y. (2013). Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A. Plos one, 8 (12), p. e81978. https://doi.org/10.1371/journal.pone.0081978
32. Kreimer, G. (2009). The green algal eyespot apparatus: a primordial visual system and more? Current Genetics, 55, pp. 19-43.
33. Kruse, O., Rupprecht, J., Mussgnug, J.H., Dismukes, G.C. & Hankamer, B. (2005). Photosynthesis: A bluepriny for solar energy capture and biohydrogen production technologies. Photochemical & Photobiological Science, 4 (12), pp. 957-970. https://doi.org/10.1039/b506923h
34. Li-Beisson, Y., Beisson, F. & Riekhof, W. (2015). Metabolism of acyl-lipids in Chlamydomonas reinhardtii. Plant J. Cell Mol. Biol., 82, pp. 504-522. https://doi.org/10.1111/tpj.12787
35. Liu, B.S. & Benning, C. (2013). Lipid metabolism in microalgae distinguishes itself. Current Opinion in Biotechnology, 24, pp. 300-309. https://doi.org/10.1016/j.copbio.2012.08.008
36. Li, Y., Han, D., Hu, G., Dauvillee, D., Sommerfeld, M., Ball, S. & Hu, Q. (2010). Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metabolic Engineering, 12, pp. 387-391. https://doi.org/10.1016/j.ymben.2010.02.002
37. Marshall, W.F. (2008). Basal bodies: Platforms for building cilia. Current Topics in Developmental Biology, 85, pp. 1-22. https://doi.org/10.1016/S0070-2153(08)00801-6
38. Merchant, S.S., Prochnik, S.E. & Vallon, O. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318, pp. 245-250. https://doi.org/10.1126/science.1143609
39. Miller, R., Wu, G., Deshpande, R.R., Vieler, A., Garther, K., Moellering, E.R., Zauner, S., Cornish, A.J., Liu, B., Bullard, B., Sears, B.B., Kuo, M.H., Hegg, E.L., Shachar-Hill, Y., Shiu, S.H. & Benning, C. (2010). Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiology, 154 (4), pp.1737-1752. https://doi.org/10.1104/pp.110.165159
40. Min, S.K., Yoon, G.H., Joo, J.H. & Sim, S.J. (2014). Mechanosensitive physiology of Chlamydomonas reinhardtii under direct membrane distortion. Scientific Reports, 4, p. 4675.
41. Moellering, E.R. & Benning, C. (2010). RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryotic Cell, 9 (1), pp. 97-106. https://doi.org/10.1128/EC.00203-09
42. Msanne, J., Konda, Xu. D., Casas-Mollano, A.R., Awada, T.,Cahoon, E.B. & Cerutti, H. (2012). Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp C-169. Phytochemistry, 75, pp. 50-59. https://doi.org/10.1016/j.phytochem.2011.12.007
43. Murphy, D.J. (2001). The biogenesis and functions of lipid bodies in animals, plants, and microorganisms. Progress in Lipid Research, 40, pp. 325-438. https://doi.org/10.1016/S0163-7827(01)00013-3
44. Mutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandrai, A. & Bux, F. (2011). Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresource Technology,102, pp. 57-70. https://doi.org/10.1016/j.biortech.2010.06.077
45. Mykhaylenko, N.F., Syvash, O.O., Tupik, N.D. & Zolotareva, O.K. (2004). Exogenous hexoses cause quantitative changes of pigment and glycerolipid composition in filamentous cyanobacteria. Photosynthetica, 42 (1), pp. 105-110. https://doi.org/10.1023/B:PHOT.0000040577.30424.d1
46. Ohad, I., Siekevitz, P. & Palade. G.E. (1967). Biogenesis of chloroplast membranes. I. Plastid dedifferentiation in a dark-grown algal mutant (Chlamydomonas reinhardtii). Journal of Cell Biology, 35, pp. 521-552.
47. Oswald, W.J. & Golueke, C.G. (1960). Biological transformation of solar energy. Advancess in Applied Microbiology, 11, pp. 223-242. https://doi.org/10.1016/S0065-2164(08)70127-8
48. Park, J.B.K., Craggs, R.J. & Shilton, A.N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102, pp. 35-42. https://doi.org/10.1016/j.biortech.2010.06.158
49. Pittman, J.K., Dean, A.P., Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102, pp. 17-25. https://doi.org/10.1016/j.biortech.2010.06.035
50. Poxleitner, M., Rogers, S.W., Samuels, A.L., Browse, J. & Rogers, J.S. (2006). A role for caleosin in egradation of oil-body storage lipid during seed germination. Plant Journal, 47, pp. 917-933. https://doi.org/10.1111/j.1365-313X.2006.02845.x
51. Ramanan, R., Kim, B.H., Cho, D.H., Ko, S.R., Oh, H.M. & Kim, H.S. (2013). Lipid droplet synthesis is limited by acetate availability in starchless mutant of Chlamydomonas reinhardtii. FEBS Letters, 587 (4), pp. 370-377. https://doi.org/10.1016/j.febslet.2012.12.020
52. Rochaix, J.D. (2002). Chlamydomonas, a model system for studying the assembly and dynamics of photosynthetic complexes. FEBS Letters, 529(1), pp. 34-38. https://doi.org/10.1016/S0014-5793(02)03181-2
53. Sager, R. & Palade, G.E. (1957). Structure and development of the chloroplast in Chlamydomonas. The normal green cell. Journal Biophysical and Biochemical Cytology, 3, pp. 463-488. https://doi.org/10.1083/jcb.3.3.463
54. Schmidt, M., Gessner, G., Luff, M. (2006). Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant Cell., 18 (8), pp. 1908-1930. https://doi.org/10.1105/tpc.106.041749
55. Shank, K.J., Su, P., Brglez, I., Boss, W.F., Dewey, R.E. & Boston, R.S. (2001). Induction of lipid metabolic enzymes during the endoplasmic reticulum stress response in plants. Plant Physiology, 126, pp. 267-277. https://doi.org/10.1104/pp.126.1.267
56. Sharma, K.K., Schuhman, H. & Schenk, P.M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5 (5), pp. 1532-1553. https://doi.org/10.3390/en5051532
57. Siaut, M., Cuine, S., Cagnon, C., Fessler, B., Nquyen, M., Carrier, P., Beyly, A., Beisson, F., Triantaphylides, C., Li-Beisson, Y. & Peltier,G. (2011). Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnology, 11, pp. 7-22. https://doi.org/10.1186/1472-6750-11-7
58. Siloto, M.P., Findlay, K., Lopez-Villalobos, A., Yeang, E.C., Nykiforuk, C.L. & Moloney, M.M. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell., 18, pp. 1961-1964.
59. Singh, A., Nigam, P.S. & Murphy, J.D. (2011). Mechanism and challenges in commercialisation of algal biofuels. Bioresource Technology, 102, pp. 26-34. https://doi.org/10.1016/j.biortech.2010.06.057
60. Small, D. (1968). A classification of biologic lipids based upon their interaction in aqueous systems. Journal of the American Oil Chemists Society, 45, pp. 108-119. https://doi.org/10.1007/BF02915334
61. Stepanov, S.S. & Zolotareva, E.K. (2011). The effect of methanol on photosynthetic activity and productivity Chlamydomonas reinhardtii Dang. (Chlorophyta). International Journale on Algae, 21 (2), pp. 178-190.
62. Stepanov, S.S. & Zolotareva, E.K. (2015). Methanol-induced stimulation of growth, intracellular amino acids, and protein content in Chlamydomonas reinhardtii. Journal of Applied Phycology, 27 (4), pp.1509-1516. https://doi.org/10.1007/s10811-014-0445-9
63. Tauchi-Sato, K., Ozeki, S., Houjou, T., Taguchi, R. & Fujimoto, T. (2002). The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. Journal of Biological Chemistry, 277, pp. 44507-44512. https://doi.org/10.1074/jbc.M207712200
64. Thiele, C. & Spandi, J. (2008). Cell biology of lipid droplets. Curr. Opin. Cell Biol., 20, pp. 378-386. https://doi.org/10.1016/j.ceb.2008.05.009
65. Thompson, G. (1996). Lipids and membrane function in green algae. Biochimica et Biophysica Acta, 1302, pp. 17-45. https://doi.org/10.1016/0005-2760(96)00045-8
66. Walther, T.C. & Farese, R.V. (2009). The life of lipid droplets. Biochimica et Biophysica Acta, 1791, pp. 459-466. https://doi.org/10.1016/j.bbalip.2008.10.009
67. Wang, Z.T., Ullrich, N., Joo, S., Waffenshmidt, S. & Goodenough, U. (2009). Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryotic Cell, 8, pp. 1856-1868. https://doi.org/10.1128/EC.00272-09
68. Wasw, N., Black, P., Stanley, B. & DiRusso, C. (2014). Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. Journal of Proteome Research, 13, pp. 1373-1396. https://doi.org/10.1021/pr400952z
69. Work, V.H., Radakovits, R., Jinkerson, R.E., Meuser, J.E., Elliott, L.G., Vinyard, D.G., Laurens, L.M., Dismukes, G.C. & Posewitz, M.C. (2010). Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryotic Cell, 9, pp. 1251-1261. https://doi.org/10.1128/EC.00075-10
70. Zabawinska, C., Van den Koornhuyse, N.D., Hulst, C., Schlichting, R., Giersch, C., Delrue, B., Lacroix, J.M., Preiss, J. & Ball. S. (2001). Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase. Journal of Bacteriology, 183 (3), pp. 1069-1077. https://doi.org/10.1128/JB.183.3.1069-1077.2001
71. Zolotareva, E.K., Shniukova, E.I. & Podorvanov, V.V. (2010). Microalgae as hydrogen producers. International Journale on Algae, 12 (3), pp. 199-220. https://doi.org/10.1615/InterJAlgae.v12.i3.10