Фізіологія рослин і генетика 2016, том 48, № 4, 310-323, doi: https://doi.org/10.15407/frg2016.04.310

Пігменти фотосинтетичного апарату і продуктивність озимої пшениці

Прядкіна Г.О., Моргун В.В.

  • Інститут фізіології рослин і генетики Національної академії наук України, Київ

Обговорено питання ролі фотосинтетичних пігментів у листках пшениці в підвищенні продуктивності цієї важливої продовольчої культури. На підставі власних і літературних даних проаналізовано сучасний стан досліджень взаємозв’язку пігментів фотосинтетичного апарату із зерновою продуктивністю. В результаті порівняння вмісту хлорофілу в листках сорту озимої пшениці більш ранньої селекції і сучасних високоінтенсивних сортів селекції Інституту фізіології рослин і генетики встановлено, що зростання врожайності останніх супроводжувалось підвищенням вмісту фотосинтетичних пігментів у їх листках. Крім того, високоінтенсивні сорти відрізнялися ліпшою адаптацією фотосинтетичного апарату до мінливих умов середовища внаслідок швидшої регуляції перерозподілу потоків поглиненої світлової енергії між фотохімічним і нефотохімічним каналами та ефективнішого її використання у фотохімічних ре­акціях. Показано можливості застосування молекулярних маркерів для з’ясування генетичних механізмів успадкування пігментного апарату та їх використання для поліпшення продуктивності рослин.

Ключові слова: Triticum aestivum L., photosynthetic pigments, productivity, efficiency of photosynthetic apparatus, molecular markers

Фізіологія рослин і генетика
2016, том 48, № 4, 310-323

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Dubrovna, O.V. & Morgun, B.V. (2009). Cellular selection of wheat for resistance to stress factors of environment. Fiziologiya i biokhimiya cult. rastenii, 41, No. 6, pp. 463-475 [in Ukrainian].

2. Kiriziy, D.A., Stasik, O.O., Priadkina, G.O. & Shadchina, T.M. (2014). Photosynthesis: CO2 assimilation and mechanisms of its regulation (Vol. 2). Kyiv: Logos [in Russian].

3. Kiriziy, D.A., Shadchina, T.M., Stasik, O.O., Priadkina, G.O., Sokolovska-Sergienko, O.G., Gulyaev, B.I. & Sytnik, S.K. (2011). Features of photosynthesis and production process in high-intensity genotypes of winter wheat. Kyiv: Osnova [in Ukrainian].

4. Morgun, V.V. (2015). Genetic improvement of plants is the basis of modern agricultural production. Visn. acad. nauk. Ukr., No. 10, pp. 3-8 [in Ukrainian].

5. Morgun, V.V., Schwartau, V.V. & Kiriziy, D.A. (2010). Prospects and modern strategies for improving the physiological fundamentals of grain cereals high productivity forming. Fiziologiya i biokhimiya cult. rastenii, 42, No. 5, pp. 371-392 [in Russian].

6. Priadkina, G.O. (2013). Photosynthetic pigments, the solar radiation use efficiency and crop plant productivity. (Extended abstract of Doctor thesis). Institute of Plant Physiology and Genetics, Kyiv, Ukraine [in Ukrainian].

7. Tyutereva, E.V. & Voitsekhovskaja, O.V. (2011). Response of chlorophyll b-Free chlorina barley mutant to a prolonged decrease in illuminance: 1. Dynamics of chlorophyll content, grown, and productivity. Russian J. Plant Physiol., 58, No. 1, pp. 1-8. https://doi.org/10.1134/S1021443711010225

8. Tyutereva, E.V. & Voitsekhovskaja, O.V. (2011). Response of chlorophyll b-Free chlorina barley mutant to a prolonged decrease in illuminance: 2. Dynamics of carotenoids in leaves chloroplasts. Russian J. Plant Physiol., 58, No. 2, pp. 218-225. https://doi.org/10.1134/S1021443711010237

9. Abdalla, M.M. & El-Khoshiban, N.H. (2007). The influence of water stress on growth, relative water content, photosynthetic pigments, some metabolic and hormonal contents of two Triticum aestivum genotypes. J. Appl. Sci. Res., No. 3, pp. 2062-2074.

10. Brandstetter, A., Geppner, M., Grausgruber, H. & Buchgraber, K. (Eds.). (2011). Wheat stress. Ahlemeyer, J. & Friedt, W. Progress in winter wheat yield in Germany - what's the share of the genetic gain? (pp. 19-24). Raumberg-Gumpenstein.

11. Ashraf, M. & Harris, P.J.C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51, No. 2, pp. 163-190. https://doi.org/10.1007/s11099-013-0021-6

12. Bell, M.A., Fisher, R.A., Byerlee, D. & Sayre, K. (1995). Genetic and agronomic contribution on yield gains: a case study for wheat. Field Crops Res., 44, pp. 675-689. https://doi.org/10.1016/0378-4290(95)00049-6

13. Biswas, D.K., Xu, H., Li, Y.G., Sun, J.Z., Wang, X.Z., Han, X.G. & Jiang, G.M. (2008). Genotypic difference in leaf biochemical, physiological, and growth responses to ozone in 20 winter wheat cultivars over the past 60 years. Glob. Change Biol., 14, No. 1, pp. 46-59.

14. Brisson, N., Gate, Ph., Gouache, D., Charmet, G., Oury, F.X. & Huard, F. (2010). Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res., 119, No. 1, pp. 201-212. https://doi.org/10.1016/j.fcr.2010.07.012

15. da Silva, C.L., Benin, G., Bornhofen, E., Beche, E., Todeschini, M.H. & Milioli, A.S. (2014). Nitrogen use efficiency is associated with chlorophyll content in Brazilian spring wheat. Austral. J. Crop Sci., 8, No. 6, pp. 957-964.

16. Davis, M.S., Forman, A. & Fajer, J. (1979). Ligated chlorophyll cation radicals: their function in photosystem II of plant photosynthesis. Proc. Natl. Acad. Sci. USA, 76, pp. 4170-4174. https://doi.org/10.1073/pnas.76.9.4170

17. Dymova, O. & Fiedor, L. (2014). Chloropylls and their role in photosynthesis. In Photosynthetic pigments: chemical structure, biological function and ecology (pp. 140-160). Syktyvkar.

18. Eggink, L.L., Park, H. & Hoober, J.K. (2001). The role of chlorophyll b in photosynthesis: Hypothesis. BMC Plant Biol., No. 1, pp. 450-465.

19. Esteban, R., Barrutia, O., Artetxe, U., Fernándes-Marín, B., Hernándes, A. & García-Plazaola, J.I. (2015). Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach. New Phytol., 206, No. 1, pp. 268-280. https://doi.org/10.1111/nph.13186

20. Evans, L.T. (Ed.). Crop Physiology: Some Case Histories. (1975). Evans, L.T., Wardlaw, I.F. & Fisher, R.A. Wheat (pp. 101-149). Cambridge Univ. Press.

21. Fiedor, L. (2014). Photosynthetic chlorophyll-protein complexes. In Photosynthetic pigments: chemical structure, biological function and ecology (pp. 21-40). Syktyvkar.

22. Foulkes, M.J., Sylvester-Bradley, R., Weightman, R. & Snape, J.W. (2007). Identifying physiological traits associated with improvement drought resistance in winter wheat. Field Crops Res., 103, No. 1, pp. 11-24. https://doi.org/10.1016/j.fcr.2007.04.007

23. Freeman, T.P., Duysen, M.E. & Williams, N.D. (1987). Effects of gene dosage on light harvesting chlorophyll accumulation, chloroplast development, and photosynthesis in wheat (Triticum aestivum). Can. J. Bot., 65, No. 10, pp. 2118-2123. https://doi.org/10.1139/b87-291

24. Ghain, B.S., Srivastava, A.K. & Gill, K.S. (1969). Inheritance of amount of chlorophyll in wheat Triticum aestivum L. Euphytica, 18, pp. 403-405. https://doi.org/10.1007/BF00397789

25. Golovko, T. & Tabalenkova, G. (2014). Pigments and productivity of the crop plants. In Photosynthetic pigments: chemical structure, biological function and ecology (pp. 207-220). Syktyvkar.

26. Jiang, G.M., Sun, J.Z., Lui, Q.N., Qu, C.M., Wang, K.J., Guo, R.J., Bai, K.Z., Gao, L.M. & Kuang, T.Y. (2003). Changes in rates of photosynthesis accompanying the yield increase in wheat cultivars released in the past 50 years. J. Plant Res., 16, No. 5, pp. 347-354. https://doi.org/10.1007/s10265-003-0115-5

27. Kauser, R., Athar, H.-U.-R. & Ashraf, M. (2006). Chlorophyll fluorescence: a potential indicator for rapid assessment of water stress tolerance in canola (Brassica napus L.). Pakistan J. Sci., 38, pp. 1501-1509.

28. Khodadadi, M., Dehghani, H., Fotokian, M.H. & Rain, B. (2014). Genetic diversity and heritability of chlorophyll content and photosynthetic indexes among some Iranian wheat genotypes. J. Biodiversity and Environmental Sci., 4, No. 1, pp. 12-23.

29. Laidig, F., Piepho, H.-P., Drobek, T. & Meyer, U. (2014). Genetic and non-genetic longterm trends of 12 different crops in German official variety performance trials and on-farm yield trends. Theor. Appl. Genet., 127, No. 5, pp. 2599-2617. https://doi.org/10.1007/s00122-014-2402-z

30. Lawlor, D.W. (2009). Musings about the effects of environment on photosynthesis. Ann. Bot., 103, No. 4, pp. 543-549. https://doi.org/10.1093/aob/mcn256

31. Lichtenthaler, H.K. (1987). Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, pp. 350-382. https://doi.org/10.1016/0076-6879(87)48036-1

32. Li, H., Tong, Y., Li, B., Jing, R., Lu, C. & Li, Zh. (2010). Genetic analysis of tolerance to photo-oxidative stress induced by high light winter wheat (Triticum aestivum L.). J. Genet. Genomics., 37, No. 2, pp. 399-412. https://doi.org/10.1016/S1673-8527(09)60058-8

33. Li, N., Jia, J., Xia, Ch., Liu, X. & Kong, X. (2013). Characterization and mapping of novel chlorophyll deficient mutant genes in durum wheat. Breed. Sci., 63, No. 2, pp. 169-175. https://doi.org/10.1270/jsbbs.63.169

34. Luo, P.G. & Ren, Z.L. (2006). Wheat leaf chlorosis controlled by a single recessive gene. J. Plant Physiol. and Mol. Biol., 32, No. 3, pp. 330-338.

35. Mackay, I., Horwell, A., Garner, J., White, J., McKee, J. & Phipott, H. (2011). Reanalyses of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. Theor. Appl Genet., 122, No. 1, pp. 225-238. https://doi.org/10.1007/s00122-010-1438-y

36. Melis, A. (1991). Dynamics of photosynthetic membrane composition. Biochem. Biophys. Acta, 1058, No. 2, pp. 87-106. https://doi.org/10.1016/S0005-2728(05)80225-7

37. Melis, A. (2009). Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant Sci., 17, No. 4, pp. 272-280. https://doi.org/10.1016/j.plantsci.2009.06.005

38. Miah, M.N.H., Yoshida, T. & Yamamoto, Y. (1997). Effect of nitrogen application during ripening period on photosynthesis and dry matter production and its impact on yield components of semi dwarf indica rice varieties under water culture condition. Soil Sci. Plant Nutr., 43, No. 1, pp. 205-217. https://doi.org/10.1080/00380768.1997.10414728

39. Murchie, E.H., Pinto, M. & Horton, P. (2009). Agriculture and the new challenges for photosynthesis research. New Phytol., 181, No. 3, pp. 532-552. https://doi.org/10.1111/j.1469-8137.2008.02705.x

40. Oster, U., Tanaka, R., Tanaka, A. & Rudiger, W. (2000). Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J., 21, No. 3, pp. 305-310. https://doi.org/10.1046/j.1365-313x.2000.00672.x

41. Quarrie, S.A., Quarrie, S.P., Radosevic, R., Rancic, D., Kaminska, A., Barnes, J.D., Leverington, M., Ceoloni, C. & Dodig, D. (2006). Dissecting a wheat QTL for yield present in a range of environments: From the QTL to candidate genes. J. Exp. Bot., 57, No. 11, pp. 2627-2637. https://doi.org/10.1093/jxb/erl026

42. Sui, N., Li, M., Meng, Q.-W., Tian, J.-ch. & Zhao, Sh.-j. (2010). Photosynthetic characteristics of a super high yield cultivar of winter wheat during late grown period. Agricult. Sci. in China, 9, No. 3, pp. 346-354. https://doi.org/10.1016/S1671-2927(09)60103-6

43. Tanaka, R. & Tanaka, A. (2000). Chlorophyll b is not just an accessory pigments but a regulator of photosynthetic antenna. Porphyrins, 9, pp. 240-245.

44. Thomas, J.A., Jeffrey, A.C., Atsuko, K. & David, M.K. (2005). Regulating the photon budget of higher plant photosynthesis. Proc. Nat. Acad. Sci. USA, 102, No. 27, pp. 9709-9713. https://doi.org/10.1073/pnas.0503952102

45. Triolo, L., Glacomelli, M. & Polito, A. (1985). Light interception, canopy temperature and photosynthesis in a yellow-green mutant of durum wheat. Acta agron. Acad. Sci. Hung., 34, No. 3/4, pp. 304-309.

46. Wang, B., Lan, T., Wu, W.R. & Li, W.M. (2003). Mapping of QTLs controlling chlorophyll content in rice (Oryza sativa L.). Acta Genet. Sin., 30, No. 12, pp. 1127-1132.

47. Wang, F., Wang, G., Li, X., Huang, J. & Zheng, J. (2008). Heredity, physiology and mapping of a chlorophyll content gene of rice (Oryza sativa L.). J. Plant Physiol., 165, No. 3, pp. 324-330. https://doi.org/10.1016/j.jplph.2006.11.006

48. Wellburn, A.P. (1994). The spectral determination of chlorophyll a and b, as well as carotenoids using various solvents with spectrophotometers of different resolution. J. Plant Physiol., 144, No. 3, pp. 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2

49. Xu, Z.Z., Yu, Z.W. & Wang, D. (2005). Nitrogen accumulation and translocation for winter wheat under different irrigation regimes. J. Agr. Crop Sci., 191, No. 6, pp. 439-449. https://doi.org/10.1111/j.1439-037X.2005.00178.x

50. Yang, D.-L., Jing, R.-L., Chang, X.-P. & Li, W. (2007). Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum L.). J. Integr. Plant Biol., 49, No. 5, pp. 646-654. https://doi.org/10.1111/j.1744-7909.2007.00443.x

51. Yang, J., Sears, R.G., Gill, B.S. & Paulsen, G.M. (2002). Genotypic difference in utilization of assimilate sources during maturation of wheat under chronic heat and heat shock stress. Euphytica, 125, No. 2, pp. 179-188. https://doi.org/10.1023/A:1015882825112

52. Zhang, K., Fang, Z., Liang, Y. & Tian, J. (2009). Genetic dissection of chlorophyll content at different stages in common wheat. J. Genet., 88, No. 2, pp. 183-189. https://doi.org/10.1007/s12041-009-0026-x

53. Zhang, K., Zhang, Y., Chen, G. & Tian, J. (2009). Genetic analysis of grain yield and leaf chlorophyll content in common wheat. Cereal Res. Communic., 37, No. 4, pp. 499-511. https://doi.org/10.1556/CRC.37.2009.4.3