Фізіологія рослин і генетика 2016, том 48, № 4, 298-309, doi: https://doi.org/10.15407/frg2016.04.298

Фізіологічні основи живлення високопродуктивних посівів зернових злаків

Швартау В.В., Михальська Л.М.

  • Інститут фізіології рослин і генетики Національної академії наук України 03022 Київ, вул. Васильківська, 31/17

Огляд присвячено основам живлення рослин, що зумовлюють розкриття генетичного потенціалу продуктивності пшениці. Розглянуто розвиток цього напряму у відділі фізіології живлення рослин Інституту фізіології рослин і генетики НАН України, роль живлення у формуванні сталих високих урожаїв, а також у подальшому нарощуванні продуктивності зернових злаків.

Ключові слова: історія розвитку фізіології живлення рослин, іономіка, пшениця

Фізіологія рослин і генетика
2016, том 48, № 4, 298-309

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Morgun, V.V., Sanin, Ye.V. & Schwartau, V.V. (2015). Club 100 centners. Modern varieties, and optimal nutrition and protection systems of winter wheat. Kyiv: Logos [in Ukrainian].

2. Morgun, V.V., Schwartau, V.V. & Kiriziy, D.A. (2010). Physiological basis of the formation of high productivity of cereals. Fiziologia i biokhimia kult. rasteniy 42, No. 5, pp. 371-392 [in Russian].

3. Situation due to the lack of food security in the world. (2014). FAO [in Russian].

4. Application of Physiology in Wheat Breeding. Mexico, D.F.: CIMMYT. Translation in Russian, Morgun, V.V. (Ed.). (2007). Kyiv: Logos.

5. Schwartau, V.V. & Mykhalska, L.M. (2013). Herbicides. Physico-chemical and biological properties. Kyiv: Logos [in Ukrainian].

6. Schwartau, V.V. & Mykhalska, L.M. (2013). Herbicides. Physiological basis of regulation of phytotoxicity. Kyiv: Logos [in Ukrainian].

7. Schwartau, V.V. & Guralchuk, J.Z. (2009). Mineral fertilizers in Ukraine. Kyiv: Logos [in Ukrainian].

8. Araus, J.L., Ferrio, J.P., Buxo, R. & Voitas, J. (2006). The historical perspective of dryland agriculture: lessons from 10000 years of wheat cultivation. J. Exp. Bot., 58, No. 2, pp. 131-145. https://doi.org/10.1093/jxb/erl133

9. Armour, T., Jamieson, P. D., Nicholls, A. & Zyskowski, R. (2004). Breaking the 15 t/ha wheat yield barrier. New directions for a diverse planet: Proceedings of the 4th Intern. Crop Sci. Congr., Brisbane, Australia, www.cropscience.org.au.

10. Barraclough, P.B., Howartha, J.R., Jonesa, J., Lopez-Bellidob, R., Parmara, S., Shepherda, C.E. & Hawkesforda, M.J. (2004). Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement. Eur. J. Agronomy, 33, pp. 1-11. https://doi.org/10.1016/j.eja.2010.01.005

11. Barraclough, P.B., Lopez-Bellido R. & Hawkesford M.J. (2014). Genotypic variation in the uptake, partitioning and remobilisation of nitrogen during grain-filling in wheat. Field Crops Res., 156, pp. 242-248. https://doi.org/10.1016/j.fcr.2013.10.004

12. Baxter, I.R., Vitek, O., Lahner, B., Muthukumar, B., Borghi, M., Morrissey, J., Guerinot, M.L. & Salt, D.E. (2008). The leaf ionome as a multivariable system to detect a plant's physiological status. PNAS, 105 (33), pp. 12081-12086. https://doi.org/10.1073/pnas.0804175105

13. Chalmers, H. (2003). Record wheat crop at 16 t/ha. Pg. 12. Rural News (NZ), Iss. 307.

14. Clemens, S., Palmgren, M.G. & Kramer, U. (2002). A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci., 7, pp. 309-315. https://doi.org/10.1016/S1360-1385(02)02295-1

15. Dyson, T. (1999). World food trends and prospects to 2025. Proc. Natl. Acad. Sci. USA, 96, pp. 5929-5936. https://doi.org/10.1073/pnas.96.11.5929

16. Evans, L.T. (1998). Feeding the 10 Billion. Plants and Population Growth. London: Cambridge Univ. Press.

17. FAOSTAT (http: // faostat.fao.org/site/291/default.aspx).

18. Fertilizer Use by Crop in Ukraine. (2005). Rome: FAO.

19. Grennan, A.K. (2009). Identification of genes involved in metal transport in plants. Plant Physiol. 149, pp. 1623-1624. https://doi.org/10.1104/pp.109.900287

20. Halford, N.G. (2012). Toward two decades of plant biotechnology: successes, failures, and prospects. Food and Energy Security, 1, pp. 9-28. https://doi.org/10.1002/fes3.3

21. Hawkesford, M.J., Araus, J.-L., Park, R., Calderini, D., Miralles, D., Shen, T., Zhang, J. & Parry, M.A. J. (2013). Prospects of doubling global wheat yields. Food and Energy Security, 2 (1), pp. 34-48. doi: 10.1002/fes3.15. https://doi.org/10.1002/fes3.15

22. Hawkesford, M.J. (November, 2012). Improving Nutrient Use Efficiency in Crops. eLS 2012, John Wiley & Sons Ltd: Chichester. http://www.els.net. https://doi.org/10.1002/9780470015902.a0023734

23. Hawkesford, M.J., Parmar, S. & Buchner, P. (2012). Mineral composition analysis: measuring anion uptake and anion concentrations in plant tissues. Methods in Molecular Biology: Plant Mineral Nutrition. Humana Press, USA, pp. 109-119.

24. Hawkesford, M.J. (2014). Reducing the reliance on nitrogen fertiliser for wheat production. J. Cereal Sci., 59. pp. 276-283. https://doi.org/10.1016/j.jcs.2013.12.001

25. Hoagland, D.R. & Davis, A.R. (1929). The intake and accumulation of electrolytes by plant cells. Protoplasma, 6, pp. 610-626. https://doi.org/10.1007/BF01604843

26. Lahner, B., Gong, J., Mahmoudian, M., Smith, E.L., Abid, K.B., Rogers, E.E., Guerinot, M.L., Harper, J.F., Ward, J.M., McIntyre, L., Schroeder, J.I. & Salt, D.E. (2003). Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat. Biotechnol., 21 (10), pp. 1215-1221. https://doi.org/10.1038/nbt865

27. Marschner, H. (1995). Mineral nutrition of higher plants, 2nd Edn. London: Acad. Press.

28. Mayer, J.E., Pfeiffer, W.H. & Beyer, P. (2008). Biofortified crops to alleviate micronutrient malnutrition. Curr. Opin. Plant Biol., 11, pp. 166-170. https://doi.org/10.1016/j.pbi.2008.01.007

29. Salt, D.E., Baxter, I. & Lahner, B. (2008) Ionomics and the study of the plant ionome. Ann. Rev. Plant Biol., 59, pp. 709-733. https://doi.org/10.1146/annurev.arplant.59.032607.092942

30. Schachtman, D.P. & Shin, R. (2006). Nutrient sensing and signaling: NPKS. Ann. Rev. Plant Biol., 58. pp. 47-69. https://doi.org/10.1146/annurev.arplant.58.032806.103750

31. Shewry, P.R., Hawkesford, M.J., Piironen, V., Lampi, A.M., Gebruers, K., Boros, D., Andersson, A.A., Åman, P., Rakszegi, M., Bedo, Z. & Ward, J.L. (2013). Natural variation in grain composition of wheat and related cereals. J. Agr. Food Chem., 61 (35), pp. 8295-8303. https://doi.org/10.1021/jf3054092

32. Rea, P.A. (2003). Ion genomics. Nature Biotechnol., 21, pp. 1149-1151. https://doi.org/10.1038/nbt1003-1149

33. Usherwood, N.R. (2000). High yield wheat in the Eastern U.S. Better Crops., 84, No. 1, p. 30.

34. Watanabe, T., Broadley, M.R., Jansen, S., White, P.J., Takada, J., Satake, K., Takamatsu, T., Tuah, S.J. & Osaki, M. (2007). Evolutionary control of leaf element composition in plants. New Physiol., 174 (3), pp. 516-523. https://doi.org/10.1111/j.1469-8137.2007.02078.x

35. Zhu, C., Naqvi, S., Gomez-Galera, S., Pelacho, A.M., Capell, T. & Christou, P. (2007). Transgenic strategies of nutritional enhancement of plants. Trends Plant Sci., 12, pp. 548-555. https://doi.org/10.1016/j.tplants.2007.09.007