Узагальнено результати досліджень, проведених у відділі фізіології та екології фотосинтезу ІФРГ НАН України у глобальному контексті вивчення ролі фотосинтезу в продукційному процесі рослин. Проаналізовано перспективи і стратегії активування фотосинтетичних процесів на різних рівнях організації — від молекулярного до ценотичного — з метою підвищення продуктивності сільськогосподарських рослин, особливо озимої пшениці. Наголошено на важливості застосованого системного підходу для пошуку лімітувальних чинників фотосинтезу і продукційного процесу рослин.
Ключові слова: productivity, photosynthesis, photorespiration, Rubisco, source-sink relation, radiation use efficiency
Повний текст та додаткові матеріали
У вільному доступі: PDFЦитована література
1. Andrianova, Yu.E. & Tarchevsky, I.A. (2000). Chlorophyll and plant productivity. Moskva: Nauka [in Russian].
2. Vlasyuk, P.A., Zhidkov, V.A., Ivchenko, V.I., Klimovitskaya, Z.M., Ohrimenko, M.F., Rudakov, E.V. & Sidorshina, T.M. (1983). The participation of trace elements in plant metabolism. In The biological role of trace elements (pp. 97-105), Moskva: Nauka [in Russian].
3. Gulyaev, B.I., Ilyashuk, E.M., Mitrofanov, B.A., Rozhko, I.I., Golik, K.N., Goysa, N.I. & Antonenko, V.S. (1983). Photosynthesis and production process. Kiev: Naukova dumka [in Russian].
4. Gulyaev, B.I., Rozhko, I.I., Rogachenko, A.D., Mitrofanov, B.A. & Borisiuk, V.A. (1989). Photosynthesis, production process, and plant productivity. Kiev: Naukova dumka [in Russian].
5. Kapitanskaya, O.S. & Priadkina, G.A. (2015). Productivity increasing of food crops by application of carboxylates of trace elements, obtained using nanotechnology. Proc. International scientific-practical conf. "Auezov reading-13:"Nurly Zhol"- a strategic step towards the industrial-innovative and socio-economic development of the country." Shymkent, 2015. Vol. 3, pp. 175-179 [in Russian].
6. Kiriziy, D.A. (2003). The role of sinks in regulation of photosynthesis and carbon partitioning in plant. Fiziologiya i biokhimiya cult. rastenii, 35, No. 5, pp. 382-391 [in Russian].
7. Kyriziy, D.A. & Ryzhikova, P.L. (2014, September). Varietals features of nitrogen use efficiency for photosynthesis in wheat plants. Proc. articles of the Intern. scientific conf. "The relevance of the ideas of V.N. Khitrovo in the study of the biodiversity of Russia and Round Table "Plants production process and its regulation" (pp. 153-157), Orel [in Russian].
8. Kiriziy, D.A., Stasik, O.O., Priadkina, G.O. & Shadchina, T.M. (2014). Photosynthesis: CO2 assimilation and mechanisms of its regulation. Vol. 2. Kyiv: Logos [in Russian].
9. Kyriziy, D.A. (2004). Photosynthesis and plant growth in the aspect of sink-source relations. Kiev: Logos [in Russian].
10. Kiriziy, D.A., Frantiychuk, V.V. & Stasik, O.O. (2015). Content of soluble carbohydrates and senescence of wheat flag leaf induced by experimental assimilates outflow interruption. Fiziol. rast. genet., 47, No. 2, pp. 136-146 [in Russian].
11. Kiriziy, D.A., Shadchina, T.M., Stasik, O.O., Priadkina, G.O., Sokolovska-Sergienko, O.G., Gulyaev, B.I. & Sytnik, S.K. (2011). Features of photosynthesis and production process in high-intensity genotypes of winter wheat. Kyiv: Osnova [in Ukrainian].
12. Kiriziy, D.A. (2013). Photosynthetic nitrogen use efficiency in wheat leaves. Fiziologiya i biokhimiya cult. rastenii, 45, No. 4, pp. 296-305 [in Russian].
13. Morhun, V.V., Sanin, Ye.V., Shvartau, V.V. & Omelianenko, O.A. (2011). 100 centners club. Winter wheat varieties of the Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine and Singenta protection system. Kyiv [in Ukrainian].
14. Kots, S.Ya. & Peterson, N.V. (2009). Mineral elements and fertilizers in plant nutrition. Kyiv: Logos [in Ukrainian].
15. Morgun, V.V. & Kiriziy, D.A. (2012). Prospects and modern strategies of wheat physiological traits improvement for increased productivity. Fiziologiya i biokhimiya cult. rastenii, 44, No. 6, pp. 463-483 [in Ukrainian].
16. Morgun, V.V., Kiriziy, D.A. & Shadchina, T.M. (2010). Ecophysiological and genetical aspects of crop adaptation to global climate changes. Fiziologiya i biokhimiya cult. rastenii, 42, No. 1, pp. 3-22 [in Russian].
17. Morgun, V.V. & Priadkina, G.A. (2014). Photosynthetic efficiency and perspectives of winter wheat increasing. Fiziol. rast. genet., 46, No. 4, pp. 279-301 [in Russian].
18. Nichiporovich, A.A. (1972). Photosynthetic activity of plants and ways to increase their productivity. In Theoretical foundations of photosynthetic productivity (pp. 511-527), Nauka [in Russian].
19. Pochinok, V.M. & Kiriziy, D.A. (2010). Productivity and quality of wheat grain related to peculiarities of partitioning nitrogen in plant. Fiziologiya i biokhimiya cult. rastenii, 42, No. 5, pp. 393-402 [in Ukrainian].
20. Priadkina, G.A. (2012). An alteration of source-sink balance and a deepoxidation state of xanthophyll cycle in winter wheat flag leaves. Fiziologiya i biokhimiya cult. rastenii, 44, No. 1, pp. 58-63 [in Russian].
21. Priadkina, G.A. (2009). Features of the reaction of xanthophylls of the violaxanthin cycle to the soil drought in two contrasting of grain productivity winter wheat varieties. Belarusian University Works, 4, No. 2, pp. 209-215 [in Russian].
22. Priadkina, G.A., Stasik, O.O., Mikhalskaya, L.N., & Schwartau V.V. (2014). A relationship between chlorophyll photosynthetic potential and yield in winter wheat (Triticum aestivum L.) at elevated temperatures. Agriculturale Biol., No. 5, pp. 88-95. https://doi.org/10.15389/agrobiology.2014.5.88eng
23. Pryadkina, G.A. & Shadchina, T.M. (2009). Relationship between parameters of power development of the photosynthetic apparatus and yield of winter wheat plants grown in years with different weather conditions. Fiziologiya i biokhimiya cult. rastenii, 41, No. 1, pp. 59-68 [in Russian].
24. Pryadkina, G.A. (2012). Solar radiation use efficiency of two winter wheat varieties contrasting in grain productivity. Farming and breeding in Belarus, Vol. 48, pp. 265-270 [in Russian].
25. Priadkina, G.O., Maslyukivska, O.V., Stasik, O.O. & Oksem, V.P. (2015). Relationship between leaves and canopy chlorophyll content at grain filling and productivity of winter wheat. Fiziol. rast. genet., 47, No. 2, pp. 167-174 [in Ukrainian].
26. Pryadkina, G.O. (2011). Functioning of xanthophyll cycle in leaves of winter wheat. Fiziologiya i biokhimiya cult. rastenii, 43, No. 1, pp. 65-71 [in Ukrainian].
27. Priadkina, G.O., Stasik, O.O. & Kosovets, O.O. (2012). Photosynthetic active radiation use efficiency of winter wheat varieties at different levels of mineral nutrition. In Achievements and problems of genetics, breeding and biotechnology. Proc. sciences works. Vol. 3 (pp. 534-539). K.: Logos, [in Ukrainian].
28. Priadkina, G.O. (2013). Photosynthetic pigments, the solar radiation use efficiency and crop plant productivity. (Extended abstract of Doctor thesis). Institute of Plant Physiology and Genetics, Kyiv, Ukraine [in Ukrainian].
29. Stasik, O.O. (2007). Analysis of kinetic factors of CO2 assimilation rate interspecies variability in genus Triticum L. using gasometric studies Functioning of xanthophyll cycle in leaves of winter wheat. Fiziologiya i biokhimiya cult. rastenii, 39, No. 6, pp. 488-495 [in Ukrainian].
30. Stasik, O.O. (2008). Limiting factors of CO2 assimilation rate in two contrasting in their productivity winter wheat varieties. Visnyk Ukr. t-va henetykiv i selektsioneriv, 6, No. 1, pp. 145-149 [in Ukrainian].
31. Stasik, O.O. (2009). A role of photorespiration in regulation of photosynthesis, productivity, and tolerance to abiotic factors. (Extended abstract of Doctor thesis). Institute of Plant Physiology and Genetics, Kyiv, Ukraine [in Ukrainian].
32. Stasik, O.O. (2014). Photorespiration: metabolism and physiological role. In Modern problems of photosynthesis. Vol. 2. (pp. 505-535), M.-Izhevsk: Computer Institution. [in Russian].
33. Tarchevskiy, I.A. & Andrianova, Yu.E. (1980). The content of pigments as an indicator of the power of development of the wheat photosynthetic apparatus. Fiziologiya rasteniy, 27, No. 2, pp. 341-347 [in Russian].
34. Shadchina, T.M., Guliaev, B.I, Kiriziy, D.A., Stasik, O.O., Priadkina, G.O. & Storozhenko, V.O. (2006). Regulation of photosynthesis and plant productivity. Physiological and environmental aspects. Kyiv: Fitosociotsenter [in Ukrainian].
35. Pat. UA 67232, IPC A01G 7/00, A01G 1/00. Method of yield of winter wheat prediction, Pryadkina, G.O., Stasik O.O. Publ. 10.02.2012 [in Ukrainian].
36. Alvaro, F., Royo, C., del Moral, L.F. & Villegas, D. (2008). Grain filling and dry matter translocation responses to source-sink modifications in a historical series of durum wheat. Crop. Sci., 48, No. 4, pp. 1523-1531. https://doi.org/10.2135/cropsci2007.10.0545
37. Aranjuelo, I., Cabrera-Bosquet, L., Araus, J.L. & Nogues, S. (2013). Carbon and nitrogen partitioning during the post-anthesis period is conditioned by N fertilization and sink strength in three cereals. Plant Biol., 15, No. 1, pp. 135-143. https://doi.org/10.1111/j.1438-8677.2012.00593.x
38. Barraclough, P.B., Lopez-Bellido, R. & Hawkesford, M.J. (2014). Genotypic variation in the uptake, partitioning and remobilization of nitrogen during grain-filling in wheat. Field Crops Res., 156, pp. 242-248. https://doi.org/10.1016/j.fcr.2013.10.004
39. Carmo-Silva, E., Scales, J.C., Madgwick, P.J. & Parry, M.A. (2015). Optimizing Rubisco and its regulation for greater use efficiency. Plant Cell Environ., 38, No. 9, pp. 1817-1832. https://doi.org/10.1111/pce.12425
40. Demmig, B., Winter, K., Kruger, A. & Czygan, F.C. (1987). Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol., 84, No. 2, pp. 218-224. https://doi.org/10.1104/pp.84.2.218
41. Dordas, C. (2009). Dry matter, nitrogen and phosphorus accumulation, partitioning and remobilization as affected by N and P fertilization and source-sink relations. Eur. J. Agr., 30, No. 2, pp. 129-139. https://doi.org/10.1016/j.eja.2008.09.001
42. Ehdaie, B., Alloush, G.A. & Waines, J.G. (2008). Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crops Res., 106, No. 1, pp. 34-43. https://doi.org/10.1016/j.fcr.2007.10.012
43. Evans, J.R.(2013). Improving photosynthesis. Plant Physiol., 162, No. 4, pp. 1780-1793. https://doi.org/10.1104/pp.113.219006
44. (2009). FAO. How to feed the world in 2050. Retrieved from 2009: http: // www.fao.org.
45. Fischer, R.A. (2008). The importance of grain or kernel number in wheat: A reply to Sinclair and Jamieson. Field Crops Res., 105, No. 1-2, pp. 15-21. https://doi.org/10.1016/j.fcr.2007.04.002
46. Fischer, R.A. (2007). Understanding the physiological basis of yield potential in wheat. J. Agr. Sci. 145, No. 2, pp. 99-113. https://doi.org/10.1017/S0021859607006843
47. Foyer, C.H., Bloom, A.J., Queval, G. & Noctor, G. (2009). Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu. Rev. Plant Biol., 60, pp. 455-484. https://doi.org/10.1146/annurev.arplant.043008.091948
48. Furbank, R.T., Quick, P.W. & Sirault, X.R.R. (2015). Improving photosynthesis and yield potential in cereal crops by targeted genetic manipulation: Prospects, progress and challenges. Field Crops Res., 182, pp. 19-29. https://doi.org/10.1016/j.fcr.2015.04.009
49. Gaju, O., Allard, V., Martre, P., Gouis, J.L., Moreau, D., Bogard, M., Hubbart, S. & Foulkes, M.J.et al. (2014). Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars. Field Crops Res., 155, pp. 213-223. https://doi.org/10.1016/j.fcr.2013.09.003
50. Golovko, T. & Tabalenkova, G. (2014). Pigments and productivity of the crop plants. In Photosynthetic pigments: chemical structure, biological function and ecology (pp. 207-220). Syktyvkar.
51. Gooding, M.J., Gregory, P.J., Ford, K.E. & Pepler, S. (2005). Fungicide and cultivar affect post-anthesis patterns of nitrogen uptake, remobilization and utilization efficiency in wheat. J. Agr. Sci., 143, pp. 503-518. https://doi.org/10.1017/S002185960500568X
52. Han, H. (2008). Radiation use efficiency and yield of winter wheat under deficit irrigation in North China. Plant Soil Environ., 54, No. 7, pp. 313-319. https://doi.org/10.17221/421-PSE
53. Hawkesford, M.J., Araus, J.-L., Park, R., Calderini, D., Miralles, D., Shen, T, Zhang, J. & Parry, M.A.J. (2013). Prospect of doubling global wheat yields. Food Energy Security, 2, No. 1, pp. 34-48. https://doi.org/10.1002/fes3.15
54. Horton, P. (2000).Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J. Exp. Bot., 51, pp. 475-485. https://doi.org/10.1093/jexbot/51.suppl_1.475
55. Horton, P., Ruban, A.V. & Walters, R.G. (1996). Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Biol., 47, pp. 655-684. https://doi.org/10.1146/annurev.arplant.47.1.655
56. Kong, L.G., Wang, F.H. & Zhang, R.T. (2012). High nitrogen rate inhibits proteolysis and decreases the export of leaf pre-stored proteins to grains in wheat (Triticum aestivum). Int. J. Agr. Biol., 14, No. 6, pp. 1009-1013.
57. Long, S.P. & Ort, D.R. (2010). More than taking the heat: crops and global change. Curr. Opin. Plant Biol., 13, No. 3, pp. 241-248. https://doi.org/10.1016/j.pbi.2010.04.008
58. Long, S.P., Zhu, X.G., Naidu, S.L. & Ort, D.R. (2006). Can improvement in photosynthesis increase crop yield? Plant Crop. Environ., 29, No. 3, pp. 315-330. https://doi.org/10.1111/j.1365-3040.2005.01493.x
59. Madani, A., Shirani-Rad, A., Pazoki, A., Nourmohammadi, G. & Zarghami, R. (2010). Wheat (Triticum aestivum L.) grain filling and dry partitioning responses to source : sink modifications under postanthesis water and nitrogen deficiency. Acta Sci.-Agr., 32, No. 1, pp. 145-151. https://doi.org/10.4025/actasciagron.v32i1.6273
60. Monteith, J.L. (1977). Climate and efficiency of crop production in Britain. Phil. Trans. Royal. Soc. London., 281, pp. 277-294. https://doi.org/10.1098/rstb.1977.0140
61. Murchie, E.H., Pinto, M. & Horton, P. (2009). Agriculture and the new challenges for photosynthesis research. New Phytol., 181, No. 3, pp. 532-552. https://doi.org/10.1111/j.1469-8137.2008.02705.x
62. Muurinen, S., Kleemola, J. & Peltonen-Sainio, P. (2007). Accumulation and translocation of nitrogen in spring cereal cultivars differing in nitrogen use efficiency. Agr. J., 99, No. 2, pp. 441-449. https://doi.org/10.2134/agronj2006.0107
63. Niyogi, K.K. (1999). Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, pp. 333-359. https://doi.org/10.1146/annurev.arplant.50.1.333
64. Ort, D.R., Merchant, S.S., Alric, J., Barcan, A., Blankenship, R.E., Bock, R., Croce, R., Hanson, M.R., Hibberd, J.M., Long, S.P., Moore, T.A., Moroney, J., Niyogi, K.K., Parry, M.A., Peralta-Yahya, P.P., Prince, R.C., Redding, K.E., Spalding, M.H., van Wijk, K.J., Vermaas, W.F., von Caemmerer, S., Weber, A.P., Yeates, T.O., Yuan, J.S. & Zhu, X.G. (2015). Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl. Acad. Sci. USA, 112, No. 28, pp. 8529-8536. https://doi.org/10.1073/pnas.1424031112
65. Pan, J., Zhu, Y. & Cao, W.X. (2007). Modeling plant carbon flow and grain starch accumulation in wheat. Field Crops Res., 101, No. 3, pp. 276-284. https://doi.org/10.1016/j.fcr.2006.12.005
66. Parry, M.A.J., Andralojc, P.J., Scales, J.C. & Salvucci, M. (2013). Rubisco activity and regulation as a targets for crop improvement. J. Exp. Bot., 64, No. 3, pp. 717-730. https://doi.org/10.1093/jxb/ers336
67. Parry, M.A.J., Reynolds, M. & Salvucci, M.E. (2011). Raising yield potential in wheat. II. Increasing photosynthetic capacity and efficiency J. Exp. Bot., 62, No. 4, pp. 453-467. https://doi.org/10.1093/jxb/erq304
68. Powell, N., Ji, X., Ravash, R. & Edlington, J. (2012). Yield stability for cereals in a changing climate. Funct. Plant Biol., 39, No. 7, pp. 539-552. https://doi.org/10.1071/FP12078
69. Priadkina, G. (2010, September). Effects of climatic change upon parameters of photosynthetic apparatus at contrast winter wheat varieties. «Climate change and its effect on water resources - Issues of national and global security». Abstract book NATO Advanced research workshop (p. 51). Izmir, Turkey.
70. Priadkina, G. (2011). Influence of long-temp increase of air temperature onto a photosynthetic apparatus capacity and yield of contrasting winter wheat varieties. Innovations and technologies News, No. 1 (10), pp. -9.
71. Raines, C.A. (2011). Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and strategies. Plant Physiol., 155, No. 1, pp. 36-42. https://doi.org/10.1104/pp.110.168559
72. Ray, D.K., Ramankutty, N., Mueller, N.D., West, P.C & Foley, J.A. (2012). Recent patterns of crop yield growth and stagnation. Nature communication, 3, number article: 1293. https://doi.org/10.1038/ncomms2296
73. Reynolds, M., Bonnett, D., Chapman, S.C., Furbank, R.T., Manés, Y., Mather, D.E. & Parry, M.A. (2011). Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J. Exp. Bot., 62, No. 2, pp. 439-452. https://doi.org/10.1093/jxb/erq311
74. Reynolds, M.P., Foulkes, J., Furbank, R., Griffiths, S., King, J., Murchie, E., Parry, M.A. & Slafer, G. (2012). Achieving yield grains in wheat. Plant Cell Environ., 35, No. 10, pp. 1799-1823. https://doi.org/10.1111/j.1365-3040.2012.02588.x
75. Robinson, S., Warburton, K., Seymour, M., Clench, M. & Tomas-Oates, J. (2007). Localization of water-soluble carbohydrates in wheat stems using imaging matrix-assisted laser desorption ionization mass spectrometry. New Phytol., 173, No. 2, pp. 438-444. https://doi.org/10.1111/j.1469-8137.2006.01934.x
76. Saint Pierre, C., Trethowa, R. & Reynolds, M. (2010). Stem solidness and its relationship to water-soluble carbohydrates: association with wheat yield under water deficit. Funct. Plant Biol., 37, No. 2, pp. 166-174. https://doi.org/10.1071/FP09174
77. Somerville, C.R. (2001). An early Arabidopsis demonstration. Resolving a few issues concerning photorespiration. Plant Physiol., 125, No. 1, pp. 20-24. https://doi.org/10.1104/pp.125.1.20
78. Stasik, O. & Jones, H.G. (2007). Response of photosynthetic apparatus to moderate high temperature in contrasting wheat cultivars at different oxygen concentrations. J. Exp. Bot., 58, No. 8, pp. 2133-2143. https://doi.org/10.1093/jxb/erm067
79. Suzuki, Yu., Fujimori, T., Kanno, K., Sasaki, A., Ohashi, Y. & Makino, A. (2012). Metabolome analysis of photosynthesis and the related primary metabolites in the leaves of transgenic rice plants with increased and decreased Rubisco content. Plant Cell Environ., 35, No. 8, pp. 1369-1379. https://doi.org/10.1111/j.1365-3040.2012.02494.x
80. Suzuki, Yu., Ohkubo, M., Hatakeyama, H., Ohashi, K., Yoshizawa, R., Kojima, S., Hayakawa, T., Yamaya, T., Mae, T. & Makino, A. (2007). Increased Rubisco content in transgenic rice transformed with the 'sense' rbcS gene. Plant Cell Physiol., 48, No. 4, pp. 626-637. https://doi.org/10.1093/pcp/pcm035
81. Tcherkez, G.G.B., Farquhar, G.D. & Andrews, T.J. (2006). Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc. Natl. Acad. Sci. USA, 103, No. 19, pp. 7246-7251. https://doi.org/10.1073/pnas.0600605103
82. Tcherkez, G. (2013). Modelling the reaction mechanism of ribulose-1,5-bisphosphate carboxylase/oxygenase and consequences for kinetic parameters. Plant Cell Environ., 36, No. 9, pp. 1586-1596. https://doi.org/10.1111/pce.12066
83. Theobald, J.C., Mitchel, R.A.C., Parry, M.A.J. & Lawlor, D.W. (1998). Estimating the excess investment in ribulose-1,5-bisphosphate carboxylase/oxygenase in leaves of spring wheat grown under elevated CO2. Plant Physiol., 118, No. 3, pp. 945-955. https://doi.org/10.1104/pp.118.3.945
84. Vaguseviciene, I., Burbulis, N., Jonytiene, V. & Vasinauskiene, R. (2012). Influence of nitrogen fertilization on winter wheat physiological parameters and productivity. J. Food Agricult. Environ., 10, No. 3-4, pp. 733-736.
85. von Caemmerer, S. (2000). Biochemical models of leaf photosynthesis. Canberra: CSIRO Publish. https://doi.org/10.1071/9780643103405
86. Whitney, S.M., Houtz, R.L. & Alonso, H. (2011). Advancing our understanding and capacity to engineer nature's CO2-sequestring enzyme, Rubisco. Plant Physiol., 155, No 1, pp. 27-35. https://doi.org/10.1104/pp.110.164814
87. Zhang, Y.H., Sun, N.N., Hong, J.P., Zhang, Q., Wang, Ch., Xue, Q.-W., Zhou, Sh.-L., Huang, Q. & Wang, Zh.-M. (2014). Effect of source-sink manipulation on photosynthetic characteristics of flag leaf and the remobilization of dry mass and nitrogen in vegetative organs of wheat. J. Integr. Agricult., 13, No. 8, pp. 1680-1690. https://doi.org/10.1016/S2095-3119(13)60665-6
88. Zhu, X.-G. (2010). Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol., 61, pp. 235-261. https://doi.org/10.1146/annurev-arplant-042809-112206
89. Zhu, X.-G., Portis, A.R.Jr. & Long, S.P. (2004). Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ., 27, No. 1, pp. 155-165. https://doi.org/10.1046/j.1365-3040.2004.01142.x