Fìzìol. rosl. genet. 2025, vol. 57, no. 6, 488-496, doi: https://doi.org/10.15407/frg2025.06.488

Effect of salinity on the nitrite reductase content in leaves and nitrogen fixing activity of symbiotic systems of soybean inoculated with rhizobia using nanocarboxylates of Mo and Ge

Bondarenko O.Yu., Obeziuk I.M., Mykhalkiv L.M., Kots S.Ya.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The nitrite reductase content in leaves, and the nitrogenase activity in nodules as components of the complex of nitrogen metabolism enzymes in symbiotic system formed by soybean plants Glycine max (L.) Merr. of the Samorodok variety and nodule bacteria Bradyrhizobium japonicum РС08 using nanocarboxylates of germanium and molybdenum under salinity (0.25 g NaCl/kg of sand) conditions were revealed. It was found that the content of nitrite reductase in soybean plants inoculated with rhizobia cultivated with trace elements was higher than in control plants bacterized with a suspension of nodule bacteria without nanocarboxylates. Salinity caused a decrease in the amount of nitrate reductase in leaves, and nitrogenase activity in plants of all studied variants, but changes in these indices varied depending on the composition of the inoculation suspension. The smallest difference in both enzymes between plants under salinity and the corresponding control was found with the use of Mo, and the largest — with Ge. The obtained data expand the understanding the Mo and Ge influence on the nitrogen assimilation enzymes activity, and support the use of Mo to optimize nitrogen metabolism in soybean plants in symbiosis with nodule bacteria under salinity conditions.

Keywords: Glycine max (L.) Merr., Bradyrhizobium japonicum, inoculation, nitrіte reductase, nitrogen-fixing activity, salinity

Fìzìol. rosl. genet.
2025, vol. 57, no. 6, 488-496

Full text and supplemented materials

References

 1. Hashiguchi, A. & Komatsu, S. (2017). Chapter 6 — Proteomics of Soybean Plants. Proteomics in Food Science: From Farm to Fork, pp. 89-105. https://doi.org/10.1016/ B978-0-12-804007-2.00006-0

 2. Zambrano Zambrano, J.G. & Jurado Olivo, E.A. (2020). Efecto de aplicaciones foliares de molibdeno sobre el uso eficiente de nitrЩgeno y rendimiento en maНz amarillo duro (Bachelor’s thesis, Calceta: ESPAM MFL).

 3. Cardoso, B.M., Lazarini, E., Moreira, A., Moraes, L.A.C., Santos, F.L.D. & Dameto, L.S. (2021). Effect of Foliar Molybdenum Application on Seed Quality of Soybean Cultivars. Commun. Soil Sci. Plant Anal., 6, No. 52, pp. 666-672. https://doi.org/ 10.1080/00103624.2020.1862164

 4. Rousk, K., Degboe, J., Michelsen, A., Bradley, R. & Bellenger, J.P. (2017). Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems. New Phytol., 214, pp. 97-107. https://doi.org/10.1111/nph.
14331

 5. Schwarz, G., Mendel, R.R. & Ribbe, M.W. (2009). Molybdenum cofactors, enzymes and pathways. Nature, 440, pp. 839-847. https://doi.org/10.1038/nature08302

 6. Cakmak, I., Brown, P., Colmenero-Flores, J.M., Husted, S., Kutman, B.Y., Nikolic, M., Rengel, Z., Schmidt, S.B. & Zhao, F.-J. (2023). Micronutrients. In: Z. Rengel, I. Cakmak & P.J. White (Eds.), Marschner’s mineral nutrition of plants (pp. 283-385). Cambridge, Academic press. https://doi.org/10.1016/b978-0-12-819773-8.00017-4

 7. Abreu-Junior, C.H., Gruberger, G.A.C., Cardoso, P.H.S., Goncalves, P.W.B., Nogueira, T.A.R., Capra, G.F. & Jani, A.D. (2023). Soybean Seed Enrichment with Cobalt and Molybdenum as an Alternative to Conventional Seed Treatment. Plants, 12, No. 5, pp. 1164. https://doi.org/10.3390/plants12051164

 8. Sarkar, A.K. & Sadhukhan, S. (2022). Proteomics — a powerful tool for understanding saline stress response in germinating seed. In: Roy S., Mathur P., Chakraborty A.P., Saha S.P. (Eds). Plant Stress: Challenges and Management in the New Decade. Springer, pp. 375-399. https://doi.org/10.1007/978-3-030-95365-2_24

 9. Gupta, S.C. & Beevers, L. (1983). Synthesis and degradation of nitrite reductase in pea leaves. J. Exp. Bot., 34, pp. 1455-1462. https://doi.org/10.1104/pp.75.1.251

10. Child, J.J. (1975). Nitrogen fixation by a daughter association of Rhizobium sp. with non-legume plant cells. Nature, 253, pp. 350-351. https://doi.org/10.1038/253350a0

11. Hardy, R.W.F., Holsten, R.D., Jackson, E.K. & Burns, R.C. (1968). Acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol., 43, No. 8, pp. 1185-1207. https://doi.org/10.1104/pp.43.8.1185

12. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of bacteriophage T4. Nature, 227, No. 5259, pp. 680-685. https://doi.org/10.1038/
227680a0

13. Sharifi, M., Ghorbanli, M. & Ebrahimzadeh, E. (2007). Improved growth of salinitystressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J. Plant Physiol., 164, pp. 1144-1151. https://doi.org/10.1016/j.jplph.2006.06.016

14. Sobhanian, H., Razavizadeh, R., Nanjo, Y., Ehsanpour, A.A., Jazii, F.R., Motamed, N. & Komatsu, S. (2010). Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Scі., 8, No. 1, p. 19. https://doi.org/10.1186/
1477-5956-8-19

15. Munns, R, James, R.A. & Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot., 57, No. 5, pp. 1025-1043. https://doi.org/ 10.1093/jxb/erj100

16. Ashraf, M. & Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp. Bot., 59, No. 2, pp. 206-216. https://doi.org/ 10.1016/j.envexpbot.2005.12.006

17. Parker, R., Flowers, T.J., Moore, A.L. & Harpham, N.V.J. (2006). An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J. Exp. Bot., 57, No. 5, pp. 1109-1118. https://doi.org/10.1093/jxb/
erj134

18. Kiriziy, D., Obeziuk, I., Mykhalkiv, L. & Kots, S. (2025). Effect of salinity on the soybean plants symbiotic and photosynthetic apparatuses activity under rhizobia inoculation with the addition of Ge and Mo nanocarboxylates. Studia Biologica, 19(2), pp. 105-120. https://doi.org/10.30970/sbi.1902.823

19. Kolbert, Z., Barroso, J.B., Brouquisse, R., Corpas, F.J., Gupta, K.J., Lindermayr, C., Loake, G.J., Palma J.M., Petйivalskъ, M., Wendehenne, D. & Hancock, J.T. (2019). A forty-year journey: the generation and role of NO in plants. Nitric Oxide Biol. Chem., 93, pp. 53-70. https://doi.org/10.1016/j.niox.2019.09.006