Plants of the Sedum genus are succulents with a specific process of photosynthesis. They are decorative, edible, and used in traditional medicine. Plants have anti-inflammatory, antimicrobial, antioxidant, hepatoprotective, antitumor, and other activities. Biochemical studies have shown the presence of compounds such as alkaloids, coumarins, flavonoids, phenolic acids, and terpenes. At the same time, the peculiarities of microclonal propagation of these plants have not been sufficiently studied, and there are no publications regarding some of them, in particular S. kamtschaticum and S. cepaea. To determine the peculiarities of in vitro morphogenesis of plants, leaf explants of S. aizoon L., S. kamtschaticum Fisch., and S. cepaea L. were cultivated on Murashige and Skoog (MS) solidified medium with the addition of growth regulators: benzylaminopurine (BAP), kinetin (Kin), a-naphthylacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D) in various combinations. The effect of growth regulators was evaluated as the percentage of explants that formed callus, shoots, and roots. Shoot regeneration did not occur on an MS hormone-free medium. It was established that using kinetin did not allow obtaining regenerated shoots in plants of any studied species. The presence of auxins (2,4-D or NAA) in concentrations of 1,0 and 2.5 mg/L did not affect this result. At the same time, adding BAP to the medium led to the initiation of shoot formation. Plants of the three studied species differed in their ability to regenerate. The best medium for obtaining regenerated shoots (near 100 %) of S. aizoon and S. kamtschaticum plants was one that contained 1.0 mg/L BAP and 0.5 mg/L NAA. At the same time, to obtain plant shoots of another species, S. cepaea, it is advisable to use a medium containing 2.5 mg/l of BAP and 1 mg/l of 2,4-D (the percentage of regeneration is 87.5 %). Thus, for the regeneration of S. aizoon, S. kamtschaticum, and S. cepaea shoots, the presence of benzylaminopurine in the medium is a prerequisite.
Keywords: Sedum aizoon L., Sedum kamtschaticum Fisch., Sedum cepaea L., morphogenesis in vitro, shoot regeneration, growth regulators
Full text and supplemented materials
Free full text: PDFReferences
1. George, E.F. & Debergh, P.C. (2008). Micropropagation: Uses and Methods. In: George, E.F., Hall, M.A., Klerk, G.J.D. (Eds.). Plant Propagation by Tissue Culture (3rd Ed.), Vol. 1. The Background. Springer.
2. ћapiє, I., ћegota, V. & Alegro, A. (2012). Where does Sedum cepaea L. (Crassulaceae) — one of the rarest species of Croatian flora — really grow? Acta Bot. Croat., 71, No. 1, pp. 177-185. https://doi.org/10.2478/v10184-011-0063-4
3. Kim, D.W., Son, K.H., Chang, H.W., Bae, K.H., Kang, S.S. & Kim, H.P. (2004). Anti-inflammatory activity of Sedum kamtschaticum. J. Ethnopharmacol., 90, No. 2-3, pp. 409-414. https://doi.org/10.1016/j.jep.2003.11.005
4. Liu, Z., Min, C., Dong, H. & Zhang, Z. (2021). Improvement of adventitious root formation in Sedum aizoon L. and the production of flavonoids. South African J. Bot., 137, pp. 483-491. https://doi.org/10.1016/j.sajb.2020.10.024
5. Liu, S., Wang, M., Xing, Y., Wang, X. & Cui, C. (2023). Anti-oxidation and anti-fatigue effects of the total flavonoids of Sedum aizoon L. J. Agricult. Food Res., 12, p. 100560. https://doi.org/10.1016/j.jafr.2023.100560
6. Wojciechowicz, M.K. (2007). Comparison of regenerative potential of petals, stamens and pistils of five Sedum species in vitro. Biodiversity: Res. Conserv., 5-8, pp. 87-94. https://doi.org/10.14746/biorc.2007.5-8.11
7. Dzjuba, O.I. & Yatsenko, M.V. (2014). Ecological and physiological as well as biochemical properties of representatives of the genus Sedum L. Ecol. Noospherol., 25, No. 3-4, pp. 24-33. https://doi.org/10.15421/031417
8. Yang, C., Qin, Y., Sun, X., Yuan, S. & Lin, H. (2012). Propagation of Sedum spectabile Boreau in leaf culture in vitro. Not Bot Hor. Agr., 40, No. 1, pp. 107-112. https://doi.org/10.15835/nbha4016566
9. Burbulis, N., Blinstrubiene, A. & Jonytiene, V. (2013). Organogenesis induction in leaf explants of Sedum L. J. Food, Agricult. Env., 11, No. 3-4, pp. 2110-2112.
10. Chen, Y.M., Liu, J.Y., Teng, Z., Lu, Q.Y. & Qiong, Y. (2017). Induction of hairy roots in heavy metal hyperaccumulator Sedum alfredii. J. Trop. Subtrop. Bot., 25, No. 2, pp. 136-140.
11. Sahito, Z.A., Zehra, A., Chen, S., Yu, S., Lin, T., Ali, Z., Hamza, S., Irfan, M., Abbas, T., He, Z. & Yang, X. (2022). Rhizobium rhizogenes-mediated root proliferation in Cd/Zn hyperaccumulator Sedum alfredii and its effects on plant growth promotion, root exudates and metal uptake efficiency. J. Hazard. Mater., 424, 127442. https://doi.org/ 10.1016/j.jhazmat.2021.127442
12. Shi, J., Long, X., Xu, Z., Cai, W. & Zuo, R. (2022). Remediation by tissue culture seedlings of Sedum alfredii Hance in Zn-, Cd- and combination-contaminated soils. J. Beijing Normal Univer. Nat. Sci., 58, No. 1, pp. 70-76. https://doi.org/10.12202/j.0476-0301.202107
13. Bravo-Avila, F.M., Rodriguez-Sahagun, A., Castellanos-Hernandez, O. & Ruvalcaba-Ruiz, D. (2015). Regeneration of Sedum praealtum A.DC (siempreviva) via organogenesis. Nova Scientia, 8, No. 17, pp. 126-139. https://doi.org/10.21640/ns.v8i17.637
14. Kim, D.H. & Sivanessan, I. (2016). Influence of benzyladenine and thidiazuron on shoot regeneration from leaf and shoot tip explants of Sedum sarmentosum Bunge. Braz. Arch. Biol. Technol., 59, e16150717. http://dx.doi.org/10.1590/1678-4324-2016150717
15. Park, H.Y., Saini, R.K., Gopal, J., Keum, Y.-S., Kim, D.H., Lee, O. & Sivanesan, I. (2017). Micropropagation and subsequent enrichment of carotenoids, fatty acids, and tocopherol contents in Sedum dasyphyllum L. Front. Chem., 5, No. 77. https://doi.org/ 10.3389/fchem.2017.00077
16. Wang, B.-L., Ge, Z.-K., Qiu, J.-R., Luan, S.-Q., Hao, X.-C. & Zha, Y.-H. (2024). Sedum aizoon L.: a review of its history, traditional uses, nutritional value, botany, phytochemistry, pharmacology, toxicology, and quality control. Front. Pharmacol., 15, 1349032. https://doi.org/10.3389/fphar.2024.1349032
17. Kang, C.-G., Hah, D.-S., Kim, C.-H., Kim, Y.-H., Kim, E., & Kim, J.-S. (2011). Evaluation of antimicrobial activity of the methanol extracts from 8 traditional medicinal plants. Toxicol. Res., 27, No. 1, pp. 31-36. https://doi.org/10.5487/TR.2011.27.1.031
18. Brandã, I. & Salema, R. (1977). Callus and plantlets development from cultured leaf explants of Sedum telephium L. Zeitschrift fтr Pflanzenphysiologie, 85, No. 1, pp. 1-8. https://doi.org/10.1016/S0044-328X(77)80259-6
19. Lee, S.-Y., An, J.-H., & Kim, H.-J. (2005). Factors affecting shoot multiplication and rooting from cutting and in vitro node culture of Sedum sarmentosum. Korean J. Horticult. Sci. Technol., 24, No 1, pp. 43-47.
20. Liu, F., Tang, Y.H., Yuan, Y.M., Guo, Q.Q., Shen, F. & Chen, J.R. (2016). Tissue culture of the succulent plant Sedum clavatum. Chinese Bull. Bot., 51, No. 2, pp. 251-256. http://dx.doi.org/10.11983/CBB15036
21. Ardelean, M., Lobiuc, A., Burducea, M., Mihali, C. & Marti, D.-T. (2019). Study of heavy metals effects on in vitro cultures of Sedum telephium ssp. maximum L. Food and Env. Safety. J. Facult. Food Eng., Stefan cel Mare University — Suceava, XVIII, No. 1, pp. 18-26.
22. Yoon, E., Jeong, J. & Choi, Y. (2002). Recovery of Basta-resistant Sedum erythrostichum via Agrobacterium-mediated transformation. Plant Cell Rep., 21, pp. 70-75. https://doi.org/10.1007/s00299-002-0485-5