The development of environmentally friendly crop production technologies is limited by the need for widespread use of chemical weed control products. Therefore, since the 1980s, components of crop production technologies have been developed with reduced levels of toxic substances. Today, the use of agrotechnical solutions known since the beginning of agricultural development is limited by rising energy prices. Both chemical (films) and organic mulches are effective in fruit and vegetable production. Great efforts have been made to develop biological methods of weed control, from selective/specific for individual weed pathogens to complex multi-component systems in agrophytocenoses, where numerous interactions between plant species, between plants in different crop layers, with different absorption efficiencies of plant protection products etc., are effectively used. Modern weed control methods are increasingly based on digital technologies in agriculture. This is being facilitated by the development of IT technologies that enable the robotization of agricultural production. The use of IT technology is also helping to solve the important problem of labour shortages. Weed-killing robots navigate in space using satellite navigation systems or LiDAR scanners. Lasers or robotic arms are used as tools. Cameras are used to detect and identify crops and weeds. In addition to mechanical weeding, the effectiveness of high-voltage electrical discharge and ultra-high frequency electromagnetic radiation has been studied. All these methods have their advantages and disadvantages. In the short term, alternative methods can only replace chemical methods in certain situations and on small areas. However, this does not preclude the possibility of further improvements in these methods and their wider use in the future.
Keywords: integrated weed management, mechanical weed control, IT in agriculture, biological control, sustainable agriculture
Full text and supplemented materials
Free full text: PDFReferences
1. Kraehmer, H., Laber, B., Rosinger, C. & Schulz, A. (2014). Herbicides as weed control agents: state of the art: I. Weed control research and safener technology: the path to modern agriculture. Plant Physiol., 166 (3), pp. 1119-1131. https://doi.org/10.1104/pp.114.241901
2. Kraehmer, H., van Almsick, A., Beffa, R., Dietrich, H., Eckes, P., Hacker, E., Hain, R., Strek, H.J., Stuebler, H. & Willms, L. (2014). Herbicides as weed control agents: state of the art: II. Recent achievements. Plant Physiol., 166 (3), pp. 1132-1148. https://doi.org/10.1104/pp.114.241992
3. Heap, I. (2024). The International Herbicide-Resistant Weed Database. September 2, 2024. Retrieved from: www.weedscience.org
4. Riar, D.S., Norsworthy, J.K., Steckel, L.E., Stephenson, D.O. & Bond, J.A. (2013). Consultant perspectives on weed management needs in midsouthern United States cotton: a follow-up survey. Weed Technol., 27 (4), рр. 778-787. https://doi.org/10.1614/WT-D-13-00070.1
5. Hurley, T.M. & Frisvold, G. (2016). Economic Barriers to Herbicide-Resistance Management. Weed Sci., 64 (S1), рр. 585-594. https://doi.org/10.1614/WS-D-15-00046.1
6. Livingston, M., Fernandez-Cornejo, J.& Frisvold, G.B. (2016). Economic returns to herbicide resistance management in the short and long run: the role of neighbor effects. Weed Sci., 64 (S1), рр. 595-608. https://doi.org/10.1614/WS-D-15-00047.1
7. Morderer, Y.Y. (2023). What is missing to create new herbicides and solving the problem of resistance? Fiziol. Rast. i Genetika, 55 (5), pp. 371-394. https://doi.org/10.15407/frg2023.05.371
8. Hatcher, P.E. & Melander, B. (2003). Combining physical, cultural and biological methods: prospects for integrated non-chemical weed management strategies. Weed Res., 43 (5), pp. 303-322. https://doi.org/10.1046/j.1365-3180.2003.00352.x
9. Harker, K. & O'Donovan, J. (2013). Recent weed control, weed management, and integrated weed management. Weed Technol., 27 (1), рр. 1-11. https://doi.org/10.1614/WT-D-12-00109.1
10. Westwood, J.H., Charudattan, R., Duke, S.O., Fennimore, S.A., Marrone, P., Slaughter, D.C., Swanton, C. & Zollinger, R. (2018). Weed Management in 2050: Perspectives on the future of weed science. Weed Sci., 66 (3), рр. 275-285. https://doi.org/10.1017/wsc.2017.78
11. Duke, S.O., Powles, S.B. & Sammons, R.D. (2018). Glyphosate - how it became a once in a hundred year herbicide and its future. Outlooks on Pest Manag., 29 (6), pp. 247-251. https://doi.org/10.1564/v29_dec_03
12. Perotti, V.E., Larran, A.S., Palmieri, V.E., Martinatto, A.K. & Permingeat, H.R. (2020). Herbicide resistant weeds: a call to integrate conventional agricultural practices, molecular biology knowledge and new technologies. Plant Sci., 290, 110255. https://doi.org/10.1016/j.plantsci.2019.110255
13. Moore, L., Jennings, K., Monks, D., Boyette, M., Leon, R., Jordan, D., Ippolito S., Blankenship, C. & Chang, P. (2023). Evaluation of electrical and mechanical Palmer amaranth (Amaranthus palmeri) management in cucumber, peanut, and sweetpotato. Weed Technol., 37 (1), рр. 53-59. https://doi.org/10.1017/wet.2023.1
14. Tichich, R.P. & Doll, J.D. (2006). Field-based evaluation of a novel approach for infecting Canada thistle (Cirsium arvense) with Pseudomonas syringae pv. tagetis. Weed Sci., 54 (1), pp. 166-171. https://doi.org/10.1614/WS-03-144R3.1
15. Leth, V., Netland, J. & Andreasen, C. (2008). Phomopsis cirsii: a potential biocontrol agent of Cirsium arvense. Weed Res., 48 (6), рр. 533-541. https://doi.org/10.1111/j.1365-3180.2008.00666.x
16. Gu, Q., Chu, S., Huang, Q., Chen, A., Li, L. & Li, R. (2023). Colletotrichum echinochloae: A Potential Bioherbicide Agent for Control of Barnyardgrass (Echinochloa crus-galli (L.) Beauv.). Plants, 12 (3), p. 421. https://doi.org/10.3390/plants12030421
17. Gressel, J. (2010). Herbicides as Synergists for Mycoherbicides, and Vice Versa. Weed Sci., 58 (3), рр. 324-328. doi:10.1614/WS-09-071.1 https://doi.org/10.1614/WS-09-071.1
18. Hallett, S.G. (2005). Where are the bioherbicides? Weed Sci., 53 (3), pp. 404-415. https://doi.org/10.1614/WS-04-157R2
19. Wu, W. & Mesgaran, M.B. (2024). Exploring sterile pollen technique as a novel tool for management of Palmer amaranth (Amaranthus palmeri). Weed Sci., 72 (3), рр. 234-240. https://doi.org/10.1017/wsc.2024.7
20. Manichart, N., Laosinwattana, C., Somala, N., Teerarak, M. & Chotsaeng, N. (2023). Physiological mechanism of action and partial separation of herbicide-active compounds from the Diaporthe sp. extract on Amaranthus tricolor L. Sci. Rep., 13 (1), 18693. https://doi.org/10.1038/s41598-023-46201-0
21. Duke, S.O. (2024). Why are there no widely successful microbial bioherbicides for weed management in crops? Pest Manag. Sci., 80 (1), pp. 56-64. https://doi.org/10.1002/ps.7595
22. Dayan, F.E. & Duke, S.O. (2014). Natural compounds as next-generation herbicides. Plant Physiol., 166 (3), pp. 1090-1105. https://doi.org/10.1104/pp.114.239061
23. Duke, S.O., Pan, Z., Bajsa-Hirschel, J. & Boyette, C.D. (2022). The potential future roles of natural compounds and microbial bioherbicides in weed management in crops. Adv. Weed Sci., 40 (SP1), e020210054. https://doi.org/10.51694/AdvWeedSci/2022;40:seventy-five003
24. Peera, P.G.S.K., Debnath, S. & Maitra, S. (2020). Mulching: Materials, advantages and crop production. Protected Cultivation and Smart Agriculture; Maitra, S., Gaikwad, D.J., Tanmoy, S., Eds. New Delhi: New Delhi Publishers. https://doi.org/10.30954/ NDP-PCSA.2020.6
25. Chalker-Scott, L. (2007). Impact of mulches on landscape plants and the environment-a review. J. Environ. Hortic., 25 (4), pp. 239-249. https://doi.org/10.24266/0738-2898-25.4.239
26. Magee, J.B. & Spiers, J.M. (1996). Influence of mulching systems on yield and quality of southern highbush blueberries. J. Small Fruit & Viticult., 3 (2-3), рр. 133-141. https://doi.org/10.1300/J065v03n02_14
27. Lamont, Jr. W.J. (2017). Plastic mulches for the production of vegetable crops. In A guide to the manufacture, performance, and potential of plastics in agriculture. Elsevier. https://doi.org/10.1016/B978-0-08-102170-5.00003-8
28. Kumar, M.V. & Sheela, A.M. (2020). Effect of plastic film mulching on the distribution of plastic residues in agricultural fields. Chemosphere, 273, 128590-128590. https://doi.org/10.1016/j.chemosphere.2020.128590
29. Altieri, D.M., Lovato, D.P., Lana, M.M. & Bittencourt, M.H. (2019, January). Testing and scaling-up agroecologically based organic conservation tillage systems for family farmers in southern Brazil. In 16th IFOAM Organic World Congress. http://orgprints. org/12338/.
30. Vincent-Caboud, L., Casagrande, M., David, C., Ryan, M.R., Silva, E.M. & Peigne, J. (2019). Using mulch from cover crops to facilitate organic no-till soybean and maize production. A review. Agron. for sustain. Dev., 39 (45), pp. 1-15. https://doi.org/10.1007/s13593-019-0590-2
31. Hiltbrunner, J., Streit, B. & Liedgens, M. (2007). Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover? Field Crop Res., 102 (3), pp. 163-171. https://doi.org/10.1016/j.fcr.2007.03.009
32. Peignѕ, J., Lefevre, V., Vian, J.F. & Fleury, P. (2015). Conservation agriculture in organic farming: experiences, challenges and opportunities in Europe. Conserv. Agric., pp. 559-578. https://doi.org/10.1007/978-3-319-11620-4_21
33. Mischler, R.A., Curran, W.S., Duiker, S.W. & Hyde, J.A. (2010). Use of a rolled-rye cover crop for weed suppression in no-till soybeans. Weed Technol., 24 (3), pp. 253-261. https://doi.org/10.1614/WT-D-09-00004.1
34. Mirsky, S.B., Ryan, M.R., Curran, W.S., Teasdale, J.R., Maul, J., Spargo, J.T. & Camargo, G.G. (2012). Conservation tillage issues: Cover crop-based organic rotational no-till grain production in the mid-Atlantic region, USA. Agric. and Food Syst., 27 (1), pp. 31-40. https://doi.org/10.1017/S1742170511000457
35. Abouziena, H.F. & Radwan, S.M. (2015). Allelopathic effects of sawdust, rice straw, bur-clover weed and cogongrass on weed control and development of onion. Int.l J. ChemTech Res., 7 (01), рр. 337-345
36. Bhaskar, V., Westbrook, A.S., Bellinder, R.R. & DiTommaso, A. (2021). Integrated management of living mulches for weed control: A review. Weed Technol., 35 (5), pp. 856-868. https://doi.org/10.1017/wet.2021.52
37. Heisey, R.M. (1990). Allelopathic and herbicidal effects of extracts from tree of heaven (Ailanthus altissima). Am. J. Bot., 77 (5), pp. 662-670. https://doi.org/10.1002/j.1537-2197.1990.tb14451.x
38. Appleton, B.L., Berrier, R., Harris, R., Alleman, D. & Swanson, L. (2000). The walnut tree: allelopathic effects and tolerant plants. Retrieved from: https://vtechworks.lib.vt.edu/bitstream/handle/10919/51323/VCE430_021_2000.pdf
39. Barbosa, L.C.A., Demuner, A.J., Clemente, A.D., Paula, V.F.D. & Ismail, F. (2007). Seasonal variation in the composition of volatile oils from Schinus terebinthifolius Raddi. QuНm. Nova, 30, рр. 1959-1965. https://doi.org/10.1590/S0100-40422007000800030
40. Uyun, Q., Respatie, D.W. & Indradewa, D. (2024). Unveiling the allelopathic potential of wedelia leaf extract as a bioherbicide against purple nutsedge: a promising strategy for sustainable weed management. Sustainability, 16 (2), p. 479. https://doi.org/10.3390/su16020479
41. Schulz, M., Marocco, A., Tabaglio, V., Macias, F.A. & Molinillo, J.M. (2013). Benzoxazinoids in rye allelopathy-from discovery to application in sustainable weed control and organic farming. J. Chem. Ecol., 39, pp. 154-174. https://doi.org/10.1007/s10886-013-0235-x
42. Barnes, J.P. & Putnam, A.R. (1987). Role of benzoxazinones in allelopathy by rye (Secale cereale L.). J. Chem. Ecol., 13 (4), pp. 889-906. https://doi.org/10.1007/BF01020168
43. Burgos, N.R. & Talbert, R.E. (2000). Differential activity of allelochemicals from Secale cereale in seedling bioassays. Weed Sci., 48 (3), pp. 302-310.
44. Zhang, Q., Li, J., Chen, H., Xuan, X., Xu, D. & Wen, Y. (2024). Mechanisms underlying allelopathic disturbance of herbicide imazethapyr on wheat and Its neighboring ryegrass (Lolium perenne). J. Agric. Food Chem., 72 (7), pp. 3445-3455. https://doi.org/10.1021/acs.jafc.3c09519
45. Pytlarz, E. & Gala-Czekaj, D. (2022). Seed meals from allelopathic crops as a potential bio-based herbicide on herbicide-susceptible and -resistant biotypes of wild oat (Avena fatua L.). Agron., 12 (12), 3083. https://doi.org/10.3390/agronomy12123083
46. Madadi, E., Fallah, S., Sadeghpour, A. & Barani-Beiranvand, H. (2022). Exploring the use of chamomile (Matricaria chamomilla L.) bioactive compounds to control flixweed (Descurainia sophia L.) in bread wheat (Triticum aestivum L.): Implication for reducing chemical herbicide pollution. Saudi J. Biol. Sci., 29 (11), 103421. https://doi.org/10.1016/j.sjbs.2022.103421
47. Yu, H.L., Ci, T. I. A. N., Shen, R. Y., Zhao, H., Juan, Y. A. N. G., Dong, J. G. & Zhang, L. H. (2023). Herbicidal activity and biochemical characteristics of the botanical drupacine against Amaranthus retroflexus L. J. Integ. Agric., 22 (5), pp. 1434-1444. https://doi.org/10.1016/j.jia.2022.08.120
48. Abdellatif, B., El Houssine, B., Atman, A., Mohammed, Y., Laila, N. & Saadia B. (2023). Reduced Corum herbicide dose with allelopathic crop water extract for weed control in faba bean. J. Plant Prot. Res., 63 (2), pp. 219-232. https://doi.org/ 10.24425/jppr.2023.145756
49. Thang, P.T., Vien, N.V., Anh, L.H., Xuan, T.D., Duong, V.X., Nhung, N.T., Trung, K.H., Quan, N.T., Nguyen C.C., Loan, L.T.K., Khanh, T.D. & Ha, T.T.T. (2023). Assessment of allelopathic activity of Arachis pintoi Krapov. & WC Greg as a potential source of natural herbicide for paddy rice. Appl. Sci., 13 (14), 8268. https://doi.org/10.3390/app13148268
50. Hada, Z., Jenfaoui, H., Khammassi, M., Matmati, A. & Souissi, T. (2022). Allelopathic effect of barley (Hordeum vulgare) and rapeseed (Brassica napus) crops on early growth of acetolactate synthase (ALS)-resistant Glebionis coronaria. Tunisian J. Plant Prot., 17 (2), рр. 55-66. https://doi.org/10.52543/tjpp.17.2.2
51. Lemerle, D., Verbenk, B., Cousens R.G. & Coombes N.E. (2006). The potential for selecting wheat varieties strongly competitive against weeds. Weed Res., 36 (6), pp. 505-513. https://doi.org/10.1111/j.1365-3180.1996.tb01679.x
52. Bernoldson, N-O. (2010). Breeding spring wheat for improved allelopathic potential. Weed Res., 50 (1), рр. 49-57. https://doi.org/10.1111/j.1365-3180.2009.00754.x
53. Tang, J., Xie, J., Chen, X. & Yu, L.Q. (2009). Can rice genetic diversity reduce Echinochloa crus-galli infestation? Weed Res., 49 (1), рр. 47-54. https://doi.org/10.1111/j.1365-3180.2008.00650.x
54. Seal, A.N. & Pratley, J.E. (2010). The specificity of allelopathy in rice (Oryza sativa). Weed Res., 50 (4), рр. 303-311. https://doi.org/10.1111/j.1365-3180.2010.00783.x
55. Machleb, J., Peteinatos, G.G., Kollenda, B.L., Andуjar, D. & Gerhards, R. (2020). Sensor-based mechanical weed control: Present state and prospects. Comput. Electron. Agric., 176, 105638. https://doi.org/10.1016/j.compag.2020.105638
56. Zawada, M., Legutko, S., GoнciaХska-owiХska, J., Szymczyk, S., Nijak, M., Wojciechowski, J. & ZwierzyХski, M. (2023). Mechanical weed control systems: methods and effectiveness. Sustainability, 15 (21), 15206. https://doi.org/10.3390/su152115206
57. Van Der Weide, R.Y., Bleeker, P.,O., Achten, V.T.J.M., Lotz, L.A.P., Fogelberg, F. & Melander, B. (2008). Innovation in mechanical weed control in crop rows. Weed Res., 48 (3), pp. 215-224. https://doi.org/10.1111/j.1365-3180.2008.00629.x
58. Christenssen, S., Sogaard, H.T., Kudsk, P., Norremark, M., Lund, I., Nadimi, E.S. & Jorgensen, R. (2009). Site-specific weed control technologies. Weed Res., 49 (3), pp. 233-241. https://doi.org/10.1111/j.1365-3180.2009.00696.x
59. Peerzada, A.M. & Chauhan, B.S. (2018). Thermal weed control: history, mechanisms, and impacts. In non-chemical weed control. Academic Press. https://doi.org/10.1016/B978-0-12-809881-3.00002-4
60. Norsworthy, J.K., Green, J.K., Barber, T., Roberts, T.L. & Walsh, M.J. (2020). Seed destruction of weeds in southern US crops using heat and narrow-windrow burning. Weed Technol., 34 (4), рр. 589-596. https://doi.org/10.1017/wet.2020.36
61. Spoth, M., Haring, S., Everman, W., Reberg-Horton, C., Greene, W. & Flessner, M. (2022). Narrow-windrow burning to control seeds of Italian ryegrass (Lolium perenne ssp. multiflorum) in wheat and Palmer amaranth (Amaranthus palmeri) in soybean. Weed Technol., 36 (5), рр. 716-722. https://doi.org/10.1017/wet.2022.70
62. DiTomaso, J.M., Brooks, M.L., Allen, E.B., Minnich, R., Rice, P.M. & Kyser, G.B. (2006). Control of invasive weeds with prescribed burning. Weed Technol., 20 (2), pp. 535-548. https://doi.org/10.1614/WT-05-086R1.1
63. Rask, A.M. & Kristoffersen, P. (2007). A review of non-chemical weed control on hard surfaces. Weed Res., 47 (5), рр. 370-380. https://doi.org/10.1111/j.1365-3180.2007.00579.x
64. Kristoffersen, P., Rask, A.M. & Larsen, S.U. (2008). Non-chemical weed control on traffic islands: a comparison of the efficacy of five weed control techniques. Weed Res., 48 (2), pp. 124-130. https://doi.org/10.1111/j.1365-3180.2007.00612.x
65. Morselli, N., Puglia, M., Pedrazzi, S., Muscio, A., Tartarini, P. & Allesina, G. (2022). Energy, environmental and feasibility evaluation of tractor-mounted biomass gasifier for flame weeding. Sustain. Energy Technol. Assess., 50, 101823. https://doi.org/10.1016/j.seta.2021.101823
66. J¬derlund, A., Norberg, G., Zackrisson, O., Dahlberg, A., Teketay, D., Dolling, A. & Nilsson, M. C. (1998). Control of bilberry vegetation by steam treatment-effects on seeded Scots pine and associated mycorrhizal fungi. For. Ecol. Manag., 108 (3), pp. 275-285. https://doi.org/10.1016/S0378-1127(98)00232-1
67. Norberg, G. & Dolling, A. (2003). Steam treatment as a vegetation management method on a grass-dominated clearcut. For. Ecol. Manag., 174 (1-3), рр. 213-219. https://doi.org/10.1016/S0378-1127(02)00022-1
68. Barberi, P., Moonen, A.C., Peruzzi, A., Fontanelli, M. & Raffaelli, M. (2009). Weed suppression by soil steaming in combination with activating compounds. Weed Res., 49 (1), рр. 55-66. https://doi.org/10.1111/j.1365-3180.2008.00653.x
69. Peruzzi, A., Raffaelli, M., Frasconi, C., Fontanelli, M., & Barberi, P. (2012). Influence of an injection system on the effect of activated soil steaming on Brassica juncea and the natural weed seedbank. Weed Res., 52 (2), рр. 140-152. https://doi.org/10.1111/j.1365-3180.2011.00901.x
70. Vidotto, F., De Palo, F. & Ferrero, A. (2013). Effect of short-duration high temperatures on weed seed germination. Ann. Appl. Biol., 163 (3), pp. 454-465. https://doi.org/10.1111/aab.12070
71. Roux-Michollet, D., Czarnes, S., Adam, B., Berry, D., Commeaux, C., Guillaumaud, N., Le Roux, X. & Clays-Josserand, A. (2008). Effects of steam disinfestation on community structure, abundance and activity of heterotrophic, denitrifying and nitrifying bacteria in an organic farming soil. Soil Biol. Biochem., 40 (7), pp. 1836-1845. https://doi.org/10.1016/j.soilbio.2008.03.007
72. Elsgaard, L., JЭrgensen, M.H. & Elmholt, S. (2010). Effects of band-steaming on microbial activity and abundance in organic farming soil. Agric. Ecosys. Environ., 137 (3-4), pp. 223-230. https://doi.org/10.1016/j.agee.2010.02.007
73. Melander, B. & Kristensen, J.K. (2011). Soil steaming effects on weed seedling emergence under the influence of soil type, soil moisture, soil structure and heat duration. Ann. Appl. Biol., 158 (2), pp. 194-203. https://doi.org/10.1111/j.1744-7348.2010.00453.x
74. Ark, P.A. & Parry, W. (1940). Application of high-frequency electrostatic fields in agriculture. Q. Rev. Biol., 15 (2), рр. 172-191. https://doi.org/10.1086/394605
75. Barker, A.V. & Craker, L.E. (1991). Inhibition of weed seed germination by microwaves. Agron. J., 83 (2), рр. 302-305. https://doi.org/10.2134/agronj1991.00021962008300020008x
76. Davis, F.S., Wayland, J.R. & Merkle, M.G. (1971). Ultrahigh-frequency electromagnetic fields for weed control: phytotoxicity and selectivity. Science, 173 (3996), pp. 535-537. https://doi.org/10.1126/science.173.3996.535
77. Rana, A. & Derr, J.F. (2018). Responses of ten weed species to microwave radiation exposure as affected by plant size. J. Environ. Hortic., 36 (1), рр. 14-20. https://doi.org/10.24266/0738-2898-36.1.14
78. Diprose, M.F., Benson, F.A. & Willis, A.J. (1984). The effect of externally applied electrostatic fields, microwave radiation and electric currents on plants and other organisms, with special reference to weed control. Bot. Rev., 50, рр. 171-223. https://doi.org/10.1007/BF02861092
79. Vincent, C., Panneton, B. & Fleurat-Lessard, F. (2001). Physical control methods in plant protection. Springer Science & Business Media https://doi.org/10.1007/978-3-662-04584-8
80. Slaven, M.J., Koch, M. & Borger, C.P. (2023). Exploring the potential of electric weed control: A review. Weed Sci., 71 (5), pp. 1-49. https://doi.org/10.1017/wsc.2023.38
81. Burgos-Artizzu, X.P., Ribeiro, A., Guijarro, M. & Pajares, G. (2011). Real-time image processing for crop/weed discrimination in maize fields. Comput. Electron. Agric., 75 (2), pp. 337-346. https://doi.org/10.1016/j.compag.2010.12.011
82. Mathiassen, S.K., Bak, T., Christensen, S. & Kudsk, P. (2006). The effect of laser treatment as a weed control method. Biosyst. Eng., 95 (4), рр. 497-505. https://doi.org/10.1016/j.biosystemseng.2006.08.010
83. WШltjen, C., Haferkamp, H., Rath, T. & Herzog, D. (2008). Plant growth depression by selective irradiation of the meristem with CO2 and diode lasers. Biosyst. Eng., 101 (3), pp. 316-324. https://doi.org/10.1016/j.biosystemseng.2008.08.006
84. Coleman, G., Betters, C., Squires, C., Leon-Saval, S. & Walsh, M. (2021). Low energy laser treatments control annual ryegrass (Lolium rigidum). Front. Agron., 2, 601542. https://doi.org/10.3389/fagro.2020.601542
85. Andreasen, C., Scholle, K. & Saberi, M. (2022). Laser weeding with small autonomous vehicles: Friends or foes? Front. Agron., 4, 841086. https://doi.org/10.3389/fagro.2022.841086
86. Heisel, T., Schou, J., Christensen, S. & Andreasen, C. (2001). Cutting weeds with a CO2 laser. Weed Res., 41 (1), pp. 19-29. https://doi.org/10.1046/j.1365-3180.2001.00212.x
87. Kaierle, S., Marx, C., Rath, T. & Hustedt, M. (2013). Find and irradiate-uasers used for weed control: chemical free elimination of unwanted plants. Laser Techn. J., 10 (3), pp. 44-47. https://doi.org/10.1002/latj.201390038
88. Marx, C., Barcikowski, S., Hustedt, M., Haferkamp, H. & Rath, T. (2012). Design and application of a weed damage model for laser-based weed control. Biosys. Eng., 113 (2), рр. 148-157. doi:10.1016/j.biosystemseng.2012.07.002 https://doi.org/10.1016/j.biosystemseng.2012.07.002
89. Wang, A., Zhang, W. & Wei, X. (2019). A review on weed detection using ground-based machine vision and image processing techniques. Comput. Electron. Agric., 158, pp. 226-240. https://doi.org/10.1016/j.compag.2019.02.005
90. Fennimore, S.A., Slaughter, D.C., Siemens, M.C., Leon, R.G. & Saber, M.N. (2016). Technology for automation of weed control in specialty crops. Weed Technol., 30 (4), pp. 823-837. https://doi.org/10.1614/WT-D-16-00070.1
91. Fatima, H.S., ul Hassan, I., Hasan, S., Khurram, M., Stricker, D. & Afzal, M.Z. (2023). Formation of a lightweight, leep learning-based weed detection system for a commercial autonomous laser weeding robot. Appl. Sci., 13 (6), 3997. https://doi.org/10.3390/app13063997
92. Reddy, N.V., Reddy, A. V. V. V., Pranavadithya, S. & Kumar, J.J. (2016). A critical review on agricultural robots. Int. J. Mech. Eng. Technol., 7 (4), рр. 183-188.
93. Bechar, A. & Vigneault, C. (2017). Agricultural robots for field operations. Part 2: Operations and systems. Biosys. Eng., 153, pp. 110-128. https://doi.org/10.1016/j.biosystemseng.2016.11.004
94. Slaughter, D.C., Giles, D.K. & Downey, D. (2008). Autonomous robotic weed control systems: A review. Comput. Electron. Agric., 61 (1), pp. 63-78. https://doi.org/10.1016/j.compag.2007.05.008
95. Hiremath, S.A., Van Der Heijden, G.W., Van Evert, F.K., Stein, A. & Ter Braak, C.J. (2014). Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter. Comput. Electron. Agric., 100, pp. 41-50. https://doi.org/10.1016/j.compag.2013.10.005
96. Lammie, C., Olsen, A., Carrick, T. & Azghadi, M.R. (2019). Low-Power and High-Speed Deep FPGA Inference Engines for Weed Classification at the Edge. IEEE Access, 7, pp. 51171-51184 https://doi.org/10.1109/ACCESS.2019.2911709
97. Mirbod, O., Choi, D., Thomas, R. & He, L. (2021). Overcurrent-driven LEDs for consistent image colour and brightness in agricultural machine vision applications. Comput. Electron. Agric., 187, 106266. https://doi.org/10.1016/j.compag.2021.106266
98. Nehme, H., Aubry, C., Solatges, T., Savatier, X., Rossi, R. & Boutteau, R. (2021). Lidar-based structure tracking for agricultural robots: Application to autonomous navigation in vineyards. J. Intell. Robotic Syst., 103 (4), p. 61. https://doi.org/10.1007/s10846-021-01519-7
99. Xie, D., Chen, L., Liu, L., Chen, L. & Wang, H. (2022). Actuators and sensors for application in agricultural robots: A review. Machines, 10 (10), p. 913. https://doi.org/10.3390/machines10100913
100. Blasco, J., Aleixos, N., Roger, J.M., Rabatel, G. & MoltЩ, E. (2002). AE-Automation and emerging technologies: Robotic weed control using machine vision. Biosyst. Eng., 83(2), pp. 149-157. https://doi.org/10.1006/bioe.2002.0109
101. Raja, R., Nguyen, T.T., Slaughter, D.C. & Fennimore, S.A. (2020). Real-time weed-crop classification and localisation technique for robotic weed control in lettuce. Biosyst. Eng., 192, рр. 257-274. https://doi.org/10.1016/j.biosystemseng.2020.02.002
102. Bawden, O., Kulk, J., Russell, R., McCool, C., English, A., Dayoub, F., Lehnert, C. & Perez, T. (2017). Robot for weed species plant-specific management. J. Field Robot., 34 (6), рр. 1179-1199. https://doi.org/10.1002/rob.21727
103. Sugimoto, M., Inoki, Y., Shirakawa, T., Takeuchi, K., Yamaji, T., Endo, M., Manabu, I., Shiro, K., Kazunori H. & Sori, H. (2018). A Study for Development of Autonomous Paddy-weeding Robot System - An experimentation for autonomously workspace-cognition and counter-rotation turn. In Proceedings of The Fourth International Conference on Electronics and Software Science, pp. 115-124.
104. Champ, J., Mora-Fallas, A., Goeau, H., Mata-Montero, E., Bonnet, P. & Joly, A. (2020). Instance segmentation for the fine detection of crop and weed plants by precision agricultural robots. Appl. Plant Sci., 8 (7), e11373. https://doi.org/10.1002/aps3.11373
105. Mary, M.F. & Yogaraman, D. (2021). Neural network based weeding robot for crop and weed discrimination. J. Phys.: Conf. Ser., 1979 (1), 012027. https://doi.org/10.1088/1742-6596/1979/1/012027
106. Li, Y., Guo, Z., Shuang, F., Zhang, M. & Li, X. (2022). Key technologies of machine vision for weeding robots: A review and benchmark. Comput. Electron. Agric., 196, 106880. https://doi.org/10.15446/rfnam.v74n1.85955
107. Quan, L., Jiang, W., Li, H., Li, H., Wang, Q. & Chen, L. (2022). Intelligent intra-row robotic weeding system combining deep learning technology with a targeted weeding mode. Biosyst. Eng., 216, pp. 13-31. https://doi.org/10.1016/j.biosystemseng.2022.01.019
108. Simon, S. & Jacob, P.M. (2022, February). Weed Plant Identification and Removal Using Machine Vision and Robotics. In 2022 International Conference on Data Analytics for Business and Industry. Sakhir, Bahrain. https://doi.org/10.1109/ICDABI56818.2022.10041569
109. McAllister, W., Whitman, J., Axelrod, A., Varghese, J., Chowdhary, G. & Davis, A. (2020). Agbots 2.0: Weeding Denser Fields with Fewer Robots. Robotics: Sci. Syst., 5, pp. 1-9. https://doi.org/10.15607/RSS.2020.XVI.062
110. Morderer, Ye. Yu. (1990). Physiological basis of using physical methods of weed control. Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukrainian. 1990 [in Russian]
111. Morderer, Ye. Yu. & Grodzinsky, D. M. (1988). Peroxidation of lipids and regulation of the state of organic dormancy of seeds. Ukrainian Bot. J., 45, (6), pp. 84-90 [in Ukrainian].
112. Coleman, G.R., Stead, A., Rigter, M.P., Xu, Z., Johnson, D., Brooker, G.M., Sukkarieh, S. & Walsh, M.J. (2019). Using energy requirements to compare the suitability of alternative methods for broadcast and site-specific weed control. Weed Technol., 33 (4), pp. 633-650. https://doi.org/10.1017/wet.2019.32
113. Gerhards, R., Risser, P., Spaeth, M., Saile, M. & Peteinatos, G. (2024). A comparison of seven innovative robotic weeding systems and reference herbicide strategies in sugar beet (Beta vulgaris subsp. vulgaris L.) and rapeseed (Brassica napus L.). Weed Res., 64 (1), pp. 42-53.