Fiziol. rast. genet. 2024, vol. 56, no. 3, 254-265, doi: https://doi.org/10.15407/frg2024.03.254

Growth characteristics, flavonoids content, and bioactivity of Artemisia annua, A. tilesii, and A. ludoviciana «hairy» root extracts

Matvieieva N.1, Duplij V.1, Bohdanovyсh T.1, Horčinová-Sedláčková V.2

  1. Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine 148 Akademika Zabolotny St., Kyiv, 03143, Ukraine
  2. Slovak University of Agriculture in Nitra 2 Trieda Andreja Hlinku, Nitra, 94976, Slovak Republic

The Artemisia genus plants has long been known as medicinal because they synthesize numerous valuable biologically active compounds with antioxidant, anti-inflammatory, antimalarial, and antitumor properties. Genetic transformation using Agrobacterium rhizogenes makes it possible to obtain «hairy» root cultures characterized by rapid growth, independence from the presence of growth regulators in the medium, and negative geotropism. Due to activity of bacterial rol genes transferred to the plant genome, «hairy» roots can synthesize biologically active compounds in higher quantities than the original plants, since the rol genes themselves are inducers of secondary plant metabolism. In the work the growth and accumulation of flavonoids in the «hairy» roots of A. annua, A. tilesii, and A. ludoviciana plants were compared. The transgenic roots of three plant species differed in terms of growth rate, flavonoid content, and level of antioxidant and reducing activity. The increase in weight of transgenic A. annua roots was 2.1—3.2 times higher than that of A. ludoviciana roots, and 2.3—3.1 times higher than that of A. tilesii roots. The highest total flavonoids content was detected in the roots with the highest growth rate and average specific content of flavonoids. Since the antioxidant and reducing activities depended on the specific content of flavonoids in the extracts from the «hairy» roots of plants of the studied species, we can assume a significant role of flavonoids in the manifestation of such activity. Thus, the A. annua «hairy» root lines used in the study, characterized by rapid growth and the highest total flavonoids content with high antioxidant activity, may be a natural source of antioxidants.

Keywords: Artemisia annua L., Artemisia tilesii Ledeb., Artemisia ludoviciana L., «hairy» roots, flavonoids, antioxidant activity

Fiziol. rast. genet.
2024, vol. 56, no. 3, 254-265

Full text and supplemented materials

Free full text: PDF  

References

1. Czechowski, T., Rinaldi, M.A., Famodimu, M.T., Veelen, M. Van, Larson, T.R., Winzer, T., Rathbone, D.A., Harvey, D., Horrocks, P. & Graham, I.A. (2019). Flavonoid Versus Artemisinin Anti-malarial Activity in Artemisia annua Whole-Leaf Extracts. Front. Plant Sci., 10, 984. https://doi.org/10.3389/fpls.2019.00984

2. Mojarrab, M., Naderi, R. & Afshar, F.H. (2015). Screening of Different Extracts from Artemisia Species for Their Potential Antimalarial Activity. Iran. J. Pharmac. Res., 14, No. 2, pp. 603-608. https://doi.org/10.22037/IJPR.2015.1653

3. Skowyra, M., Gallego, M.G., Segovia, F. & Almajano, M.P. (2014). Antioxidant Properties of Artemisia annua Extracts in Model Food Emulsions. Antioxidants, 3, No. 1, pp. 116-128. https://doi.org/10.3390/antiox3010116

4. Wang, Q., Jin, J., Dai, N., Han, N., Han, J. & Bao, B. (2016). Anti-inflammatory effects, nuclear magnetic resonance identification, and high-performance liquid chromatography isolation of the total flavonoids from Artemisia frigida. J. Food Drug Analysis, 24, No. 2, pp. 385-391. https://doi.org/10.1016/j.jfda.2015.11.004

5. Kolesar, J.M. & Seeberger, P.H. (2022). Editorial: Anticancer Potential of Artemisia annua. Front. Oncol., 12, 853406. https://doi.org/10.3389/fonc.2022.853406

6. Singh, N.B., Devi, M.L., Biona, T., Sharma, N., Das, S., Chakravorty, J., Mukherjee, P.K. & Rajashekar, Y. (2023). Phytochemical Composition and Antimicrobial Activity of Essential Oil from the Leaves of Artemisia vulgaris L. Molecules, 28, No. 5, pp. 2279. https://doi.org/10.3390/molecules28052279

7. Palacios-Espinosa, J.F., NyФez-AragЩn, P.N., Gomez-Chang, E., Linares, E., Bye, R., & Romero, I. (2021). Anti-Helicobacter pylori Activity of Artemisia ludoviciana subsp. mexicana and Two of Its Bioactive Components, Estafiatin and Eupatilin. Molecules, 26, No. 12, 3654. https://doi.org/10.3390/molecules26123654

8. Anaya-Eugenio, G.D., Rivero-Cruz, I., Rivera-Ch«vez, J. & Mata, R. (2014). Hypoglycemic properties of some preparations and compounds from Artemisia ludoviciana Nutt. J. Ethnophar., 155, No. 1, pp. 416-425. https://doi.org/10.1016/j.jep.2014.05.051

9. Duplij, V.P. & Matvieieva, N.A. (2019). Features of the dynamics of flavonoid accumulation in Artemisia tilesii Ledeb. Fiziol. rast. genet., 51, No. 4, pp. 308-314. [in Ukrainian]. https://doi.org/10.15407/frg2019.04.308

10. Skorokhod, I.O., Bohdanovych, T.A. & Matvieieva, N.A. Phenolcarboxylic acids in Artemisia tilesii Ledeb. «hairy» roots. Modern achievements of pharmaceutical technology. Kharkiv: NUPh.

11. Christey, M.C. & Braun, R.H. (2005). Production of hairy root cultures and transgenic plants by Agrobacterium rhizogenes-mediated transformation. Humana Press, pp. 47-60. https://doi.org/10.1385/1-59259-827-7:047

12. Bulgakov, V.P. (2008). Functions of rol genes in plant secondary metabolism. Biotechnol. Adv., 26, No. 4, pp. 318-324. https://doi.org/10.1016/j.biotechadv.2008.03.001

13. PДkal, A. & Pyrzynska, K. (2014). Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Analyt. Methods, 7, No. 9, pp. 1776-1782. https://doi.org/10.1007/s12161-014-9814-x

14. Brand-Williams, W., Cuvelier, M.E. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci. Technol., 28, No. 1, pp. 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

15. Matvieieva, N.A., Morgun, B.V., Lakhneko, O.R., Duplij, V.P., Shakhovsky, A.M., Ratushnyak, Y.I., Sidorenko, M., Mickevicius, S. & Yevtushenko, D.P. (2020). Agrobacterium rhizogenes-mediated transformation enhances the antioxidant potential of Artemisia tilesii Ledeb. Plant Physiol. Biochem., 152, pp. 177-183. https://doi.org/10.1016/j.plaphy.2020.04.020

16. Bohdanovych, T.A., Shakhovsky, A.M., Duplij, V.P., Ratushnyak, Y.I., Kuchuk, M.V., Poyedinok, N.L. & Matvieieva, N.A. (2021). Effects of Genetic Transformation on the Antioxidant Activity of «Hairy» Roots of Althaea officinalis L., Artemisia vulgaris L., and Artemisia tilesii Ledeb. Cytol. Genet., 55, No. 6, pp. 531-539. https://doi.org/10.3103/S0095452721060037

17. Mauro, M.L. & Bettini, P.P. (2021). Agrobacterium rhizogenes rolB oncogene: An intriguing player for many roles. Plant Physiol. Biochem., 165, pp. 10-18. https://doi.org/10.1016/j.plaphy.2021.04.037

18. Tanaka, N., Fujikawa, Y., Aly, M.A.M., Saneoka, H., Fujita, K. & Yamashita, I. (2001). Proliferation and rol gene expression in hairy root lines of Egyptian clover. Plant Cell, Tissue Organ Cult., 66, No. 3, pp. 175-182. https://doi.org/10.1023/A:1010648124872

19. Gai, Q.Y., Jiao, J., Luo, M., Wang, W., Gu, C.B., Fu, Y.J. & Ma, W. (2016). Tremendous enhancements of isoflavonoid biosynthesis, associated gene expression and antioxidant capacity in Astragalus membranaceus hairy root cultures elicited by methyl jasmonate. Process Biochem., 51, No. 5, pp. 642-649. https://doi.org/10.1016/j.procbio.2016.01.012

20. Chandra, S. (2012). Natural plant genetic engineer Agrobacterium rhizogenes: Role of T-DNA in plant secondary metabolism. Biotechnol. Lett., 34, No. 3, pp. 407-415. https://doi.org/10.1007/s10529-011-0785-3

21. Chandra, S. & Chandra, R. (2011). Engineering secondary metabolite production in hairy roots. Phytochem. Rev., 10, No. 3, pp. 371-395. https://doi.org/10.1007/s11101-011-9210-8

22. Ho, T.T., Lee, J. Du, Ahn, M.S., Kim, S.W. & Park, S.Y. (2018). Enhanced production of phenolic compounds in hairy root cultures of Polygonum multiflorum and its metabolite discrimination using HPLC and FT-IR methods. Appl. Microbiol. Biotechnol., 102, No. 22, pp. 9563-9575. https://doi.org/10.1007/s00253-018-9359-9

23. Gai, Q.Y., Jiao, J., Luo, M., Wei, Z.F., Zu, Y.G., Ma, W. & Fu, Y.J. (2015). Establishment of Hairy Root Cultures by Agrobacterium Rhizogenes Mediated Transformation of Isatis Tinctoria L. for the Efficient Production of Flavonoids and Evaluation of Antioxidant Activities. PLOS ONE, 10, No. 3, e0119022. https://doi.org/10.1371/journal.pone.0119022

24. Malarz, J., Michalska, K., Yudina, Y. V. & Stojakowska, A. (2022). Hairy Root Cultures as a Source of Polyphenolic Antioxidants: Flavonoids, Stilbenoids and Hydrolyzable Tannins. Plants, 11, No. 15, pp. 1950. https://doi.org/10.3390/plants11151950

25. Tusevski, O., Vinterhalter, B., Krstiє Miloлeviє, D., Sokoviє, M., ‡iriє, A., Vinterhalter, D., Zdravkoviє Koraє, S., Petreska Stanoeva, J., Stefova, M. & Gadzovska Simic, S. (2017). Production of phenolic compounds, antioxidant and antimicrobial activities in hairy root and shoot cultures of Hypericum perforatum L. Plant Cell, Tissue Organ Cult., 128, No. 3, pp. 589-605. https://doi.org/10.1007/s11240-016-1136-9

26. Gutierrez-Valdes, N., H¬kkinen, S.T., Lemasson, C., Guillet, M., Oksman-Caldentey, K.M., Ritala, A. & Cardon, F. (2020). Hairy Root Cultures - A Versatile Tool With Multiple Applications. Front. Plant Sci., 11, p. 33. https://doi.org/10.3389/fpls.2020.00033

27. Shi, M., Liao, P., Nile, S.H., Georgiev, M.I. & Kai, G. (2021). Biotechnological Exploration of Transformed Root Culture for Value-Added Products. Trends Biotechnol., 39, No. 2, pp. 137-149. https://doi.org/10.1016/j.tibtech.2020.06.012