The mutagenic activity of radionuclide soil contamination in the exclusion zone of the Chernobyl nuclear power plant 35 years after the accident was studied. Using the ana-telophase method, a cytogenetic analysis of root meristem cells of Triticum aestivum L. seedlings of Smuglyanka and Bohdanа varieties, which were treated by prolonged exposure to radionuclide soil contamination within the 10-km zone of the Chernobyl NPP (the villages of Kopachi, Chistohalivka, and Yaniv), was carried out. The specific activity of 137Cs and 90Sr was 4.5—28.2 kBq/kg. The soil of Glevakha village, Fastiv district, Kyiv region, whose specific radioactivity is 0.29 kBq/kg, was taken as control. The frequency of aberrant cells induced by radionuclide soil contamination exceeds the control level by 3.5—7.5 times. A direct relationship between the frequency of aberrant cells and the specific radioactivity of the soil was not found. The spectrum of chromosomal disorders included paired fragments and bridges, typical for the conditions of exposure to ionizing radiation, the ratio of which varies between 1.0 and 7.2. The mutagenic effect of radionuclide contamination of the soil causes an expansion of the chromosomal aberrations spectrum and abnormalities of mitosis, which includes chromosomal acentric rings, micronuclei, lagging chromosomes. Induction of lagging chromosomes as a result of prolonged exposure to radionuclide contamination of the soil indicates the aneugenic effect of the mutagenic factor. The mutagenic effect of radionuclides in the soil of the Chernobyl NPP exclusion zone is accompanied by the appearance of cells with multiple aberrations, the proportion of which shows an inverse dependence on the density of radionuclide contamination, which can be taken into account when conducting radioecological monitoring of the natural environment. The results of long-term research of the genetic consequences of the Chernobyl disaster and accidents at nuclear objects in other countries indicate a long-term radiation threat to the stability of the genome of living organisms and serve as a basis for including in the state environmental program systematic genetic monitoring of the territories affected by radionuclide pollution and near radiation-dangerous objects.
Keywords: Triticum aestivum L., radionuclide contamination, specific radioactivity, chromosomal aberrations
Full text and supplemented materials
Free full text: PDFReferences
1. Duarte, G.T., Volkova, P.Y., Perez, F.F. & Horemans, N. (2023). Chronic ionizing radiation of plants: an evolutionary factor from direct damage to non-target effects. Plants, 12, No. 5, 1178. https://doi.org/10.3390/plants12051178
2. Mousseau, T.A. (2021). The biology of Chernobyl. Ann. Rev. Ecol. Evol. Systematics. No. 52, pp. 87-109. https://doi.org/10.1146/annurev-ecolsys-110218-024827
3. Amiard, J.C. (2018). Military Nuclear Accidents: Environmental, Ecological, Health and Socio-economic Consequences. Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9781119572558
4. Beresford, N.A., Fesenko, S., Konoplev, A., Skuterud, L., Smith, J.T. & Voigt, G. (2016). Thirty years after the Chernobyl accident: What lessons have we learnt? J. Environ. Radioact., No. 157, pp. 77-89. https://doi.org/10.1016/j.jenvrad.2016.02.003
5. Piguet, F.-P., Eckert, P., Deriaz, B., Knтsli, C. & Giuliani, G. (2019). Modeling of a major accident in five nuclear power plants from 365 meteorological situations in Western Europe and analysis of the potential impacts on populations, soils and affected countries. Geneva: Biosphere Institute.
6. Cannon, G. & Kiang, J.G. (2022). A review of the impact on the ecosystem after ionizing irradiation: wildlife population. Int. J. Radiat. Biol., 98, No. 6 pp. 1054-1062. https://doi.org/10.1080/09553002.2020.1793021
7. Ludovici, G.M., Chierici, A., de Souza, S.O., d'Errico, F., Iannotti, A. & Malizia, A. (2022). Effects of Ionizing Radiation on Flora Ten Years after the Fukushima Dai-ichi Disaster. Plants, 11, No. 2, p. 222. https://doi.org/10.3390/plants11020222
8. Skalozubov, V., Kozlov, I., Hayo, H., Kozlov, O., Dudarev, I. & Yarotskaya, G. (2022). Issues of predictingthe impact of nuclear power facilities accidents' radiation consequences. Proc. Odessa Polytech. Univ., 66, No. 2, pp. 64-73. https://doi.org/10.15276/opu.2.66.2022.08
9. Baker, R.J., Dickins, B., Wickliffe, J.K., Khan, F.A., Gaschak, S., Makova, K.D. & Phillips, C.D. (2017). Elevated mitochondrial genome variation after 50 generations of radiation exposure in a wild rodent. Evol. Appl., 10, No. 8, pp. 784-791. https://doi.org/10.1111/eva.12475
10. Fuller, N., Ford, A.T., Lerebours, A., Gudkov, D.I., Nagorskaya, L.L. & Smith, J.T. (2019). Chronic radiation exposure at Chernobyl shows no effect on genetic diversity in the freshwater crustacean, Asellus aquaticus thirty years on. Ecol. Evol., No. 9, pp. 10135-10144. https://doi.org/10.1002/ece3.5478
11. Morgun, V.V. & Yakymchuk, R.A. (2021). Henetychni naslidky Chornobylskoi katastrofy: 35 rokiv doslidzhen [Genetic consequences of chornobyl disaster: 35 years of study]. Fiziol. rast. genet., 53, No. 3, pp. 216-239 [in Ukrainian]. https://doi.org/10.15407/frg2021.03.216
12. Dillon, M.N., Thomas, R., Mousseau, T.A., Betz, J.A., Kleiman, N.J., Reiskind, M.O.B. & Breen, M. (2023). Population dynamics and genome-wide selection scan for dogs in Chernobyl. Can. Med. Genet., 10, No. 1. pp. 1-14. https://doi.org/10.1186/s40575-023-00124-1
13. Jernfors, T, Kes¬niemi, J., Lavrinienko, A., Mappes, T., Milinevsky, G., MЭlleret, A.P., Mousseau, T.A., Tukalenko, E. & Watts, P.C. (2018). Transcriptional upregulation of DNA damage response genes in bank voles (Myodes glareolus) inhabiting the Chernobyl Exclusion Zone. Front. Environ. Sci., No. 5. pp. 1-8. https://doi.org/10.3389/fenvs.2017.00095
14. Kes¬niemi, J., Lavrinienko, A., Tukalenko, E,, Boratynski, Z., Kivisaari, K., Mappes, T., Milinevsky, G., MЭller, A.P., Mousseau, T.A. & Watts, P.C. (2019). Exposure to environmental radionuclides associates with tissue-specific impacts on telomerase expression and telomere length. Sci. Rep. 9, No. 1, pp. 1-9. https://doi.org/10.1038/s41598-018-37164-8
15. Kes¬niemi, J., Lavrinienko, A., Tukalenko, E., Moutinho, A.F., Mappes, T., MЭller, A.P., Mousseau, T.A. & Watts, P.C. (2020). Exposure to environmental radionuclides alters mitochondrial DNA maintenance in a wild rodent. Evol. Ecol., 34, No. 2, pp. 163-174. https://doi.org/10.1007/s10682-019-10028-x
16. Tronko, M.D., Zamotaieva, H.A., Paster, I.P. & Masiuk, S.V. (2019). Ukrainsko-Amerykanskyi proekt doslidzhennia naslidkiv oprominennia in utero vnaslidok avarii na Chornobylskii AES: ohliad naukovykh publikatsii [The Ukrainian-American project for studying the consequences of in utero exposure to ionizing radiation as a result of the accident at the Chornobyl NPP: a review of scientific publications]. Endokrynologia, 24, No. 4, pp. 346-359 [in Ukrainian]. https://doi.org/10.31793/1680-1466.2019.24-4.346
17. Reste, J., Zvagule, T., Kurjane, N., Diesters, A., Silova, A., Eglite, M., Cirule, J., Gabruseva, N., Ziverts, A. & Eurbakova, E. (2016). Investigations on health conditions of chernobyl nuclear power plant accident recovery workers from latvia in late period after disaster. Proc. Latvian Acad. Sci., 70, No. 5, pp. 257-265. https://doi.org/10.1515/prolas-2016-0040
18. Einor, D., Bonisoli-Alquati, A., Costantini, D., Mousseau, T.A. & MЭller, A.P. (2016). Ionizing radiation, antioxidant response and oxidative damage: a meta-analysis. Sci. Total Environ., 48, No. 5, pp. 463-471. https://doi.org/10.1016/j.scitotenv.2016.01.027
19. Car, C., Gilles, A., Goujon, E., Muller, M.L.D., Camoin, L., Frelon, S., Burraco, P., Granjeaud, S., Baudelet, E., Audebert, S., Orizaola, G., Armengaud, J., Tenenhaus, A., Garali, I., Bonzom, J.M. & Armant, O. (2023). Population transcriptogenomics highlights impaired metabolism and small population sizes in tree frogs living in the Chernobyl Exclusion Zone. Evol. Appl. 15, No. 2, pp. 203-2019. https://doi.org/10.1111/eva.13282
20. Ivanuta, S.P. (2021). 35 rokiv Chornobylskoi katastrofy: naslidky ta priorytety podolannia [35 years of the Chernobyl disaster: consequences and priorities of overcoming]. National Institute of Strategic Studies. Center for Security Studies. pp. 1-5 [in Ukrainian].
21. Caplin, N. & Willey, N. (2018). Ionizing radiation, higher plants, and radioprotection: from acute high doses to chronic low doses. Front. Plant Sci., No. 9, 847. https://doi.org/10.3389/fpls.2018.00847
22. Shore, R.E., Beck, H.L., Boice, J.D., Caffrey, E.A., Davis, S., Grogan, H.A., Mettler, F.A., Preston, R.J., Till, J.E., Wakeford, R., Walsh, L. & Dauer, L.T. (2018). Implications of recent epidemiologic studies for the linear nonthreshold model and radiation protection. J. Radiol. Protect., 38, No. 3, pp. 1217-1233. https://doi.org/10.3389/fpls.2018.00847
23. Mousseau, T.A. & MЭller, A.P. (2020). Plants in the light of ionizing radiation: what have we learned from Chernobyl, Fukushima, and other «hot» places? Front. Plant Sci., No. 11, pp. 1-9. https://doi.org/10.3389/fpls.2020.00552
24. Maluszynska, J. & Juchimiuk, J. (2005). Plant genotoxicity: a molecular cytogenetic approach in plant bioassays. Arch. Indust. Hygiene Toxicol., No. 56, pp. 177-184.
25. Ramzaev, V., BЭtter-Jensen, L. & Thomsen, K.J. (2008). An assessment of cumulative external doses from Chernobyl fallout for a forested area using the optically stimulated luminescence from quartz inclusions in bricks. J. Environ. Radioact., 99, No. 7, pp. 1154-1164. https://doi.org/10.1016/j.jenvrad.2008.01.014
26. Singh, R.J. (2018). Practical manual on plant cytogenetics. Boca Raton: CRC Press. https://doi.org/10.4324/9781351228268
27. Atramentova, L.O., & Utievska, O.M. (2007). Biometriia [Biometrics]. Kharkiv: Ranok [in Ukrainian].
28. Bolsunovsky, A., Dementyev, D., Trofimova, E., Iniatkina, E., Kladko, Y. & Petrichenkov, M. (2019). Chromosomal aberrations and micronuclei induced in onion (Allium cepa) by gamma-radiation. J. Environ. Radioact., No. 20, pp. 1-6. https://doi.org/10.1016/j.jenvrad.2019.05.014
29. Garnier-Laplace, J., Geras'kin, S., Della-Vedova, C., Beaugelin-Seiller, K., Hinton, T.G., Real, A. & Oudalovaet, A. (2013). Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates. J. Environ. Radioact., No. 121, pp. 12-21. https://doi.org/10.1016/j.jenvrad.2012.01.013
30. Yakymchuk, R.A. (2018). Cytogenetic disorders in Triticum aestivum L. cells affected by radionuclide contamination of water reservoirs in the alienation zone of Chornobyl NPP. Biopolym. Cell., 34, No. 2, pp. 97-106. https://doi.org/10.7124/bc.000974
31. Yin, X., Mason, J., Lobachevsky, P.N., Munforte, L., Selbie, L., Ball, D.L., Martin, R.F., Leong, T., Siva, S. & Martin, O.A. (2019). Radiation therapy modulates dna repair efficiency in peripheral blood mononuclear cells of patients with non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys., 103, No. 2, pp. 521-531. https://doi.org/10.1016/j.ijrobp.2018.10.001
32. Ocolotobiche, E.E., Dauder, R.M. & Gтerci, A.M. (2021). Radiosensitivity of radiotherapy patients: the effect of individual DNA repair capacity. Mutat. Res., No. 867, pp. 1-5. https://doi.org/10.1016/j.mrgentox.2021.503371
33. Cherednichenko, O., Pilyugina, A., Nuraliev, S. & Azizbekova, D. (2024). Persons chronically exposed to low doses of ionizing radiation: a cytogenetic dosimetry study. Mutat. Res., No. 894, pp. 1-10. https://doi.org/10.1016/j.mrgentox.2024.503728
34. Shkarupa, V.M., Neumerzhytska, L.V., Klymenko, S.V. & Semihlazova, T.V. (2011). Dynamika zmin spektra aberatsii khromosom, indukovanykh mitomitsynom C u Allium cepa L. [Dynamics of changes in chromosome aberration spectrum induced by mytomicin C in Allium cepa L.]. Bull Ukrain. Soc. Genet. Breed., 9, No. 1, pp. 112-117 [in Ukrainian].
35. Anderson, R.M. (2019). Cytogenetic Biomarkers of Radiation Exposure. Clinic. Oncol., 31, pp. 311-318. https://doi.org/10.1016/j.clon.2019.02.009
36. Nugis, V.Y., Kozlova, M.G., Nadejina, N.M., Galstyan, I.A., Nikitina, V.A., Khvostunov, K.I. & Golub, E.V. (2019). Cytogenetic biodosimetry of accidental exposures in the long terms after irradiation. Radiat. Protect. Dos., 186, No. 1, pp. 31-36. https://doi.org/10.1093/rpd/ncz040
37. Krupina, K., Goginashvili, A. & Cleveland, D.W. (2021). Causes and consequences of micronuclei. Curr. Opin. Cell Biol., No. 70, pp. 91-99. https://doi.org/10.1016/j.ceb.2021.01.004
38. Burssed, B., Zamariolli, M., Bellucco, F.T. & Melaragno, M.I. (2022). Mechanisms of structural chromosomal rearrangement formation. Mol. Cytogen., No. 15, pp. 1-19. https://doi.org/10.1186/s13039-022-00600-6
39. Siri, S.O., Martino, J. & Gottifredi, V. (2021). Structural chromosome instability: types, origins, consequences, and therapeutic opportunities. Cancers, No. 13, pp. 1-22. https://doi.org/10.3390/cancers13123056
40. Kutsokon, N.K., Bezrukov, V.F., Lazarenko, L.M., Rashydov, N.M. & Hrodzynskyi, D.M. (2003). Kilkist aberatsii na aberantnu klitynu yak parametr khromosomnoi nestabilnosti. 1. Kharakterystyka dozovykh zalezhnostei [The number of aberrations per aberrant cell as a parameter of chromosomal instability. 1. Characteristics of dose dependence]. Cytol. Genet., 37, No. 4, pp. 20-25 [in Ukrainian].