Fìzìol. rosl. genet. 2023, vol. 55, no. 1, 58-73, doi: https://doi.org/10.15407/frg2023.01.058

Physiological and biochemical characteristics of transgenic winter wheat plants withoverexpression of ornithine-d-aminotransferases gene

Dubrovna O.V., Priadkina G.O., Mykhalska S.I., Komisarenko A.G.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska Str., Kyiv, 03022, Ukraine

Ornithine-d-aminotransferase may be an important regulator of cellular metabolism, as the reaction catalyzed by this enzyme links a number of biochemical systems. Introducing the exogenous ornithine-d-aminotransferase gene (oat)into the plant genome is one of the promising methods of creating wheat genotypes resistant to abiotic stresses. The aim of this study has been to determine the physiological and biochemical characteristics of transgenic plants of new promising genotypes of winter soft wheat of the seed generation T2 with overexpression of the ornithine-d-aminotransferase gene under normal and stressful conditions. The enzyme activity, the free proline content, the photosynthetic pigments content and morphometric indicators were studied. It was shown that the presence of an additional copy of the oat gene in transgenic plants leads to an increase in the activity of the ornithine-d-aminotransferase enzyme (by 1.5—1.7 times, compared to the original plants), but they do not significantly differ from the original genotypes in terms of the free of L-proline content neither under physiological conditions nor under conditions of water deficit. It was found that under stressful conditions during period booting — anthesis, genetically modified plants of the seed generation T2 kept a higher total chlorophyll content (on average by 10 %) compared to the original genotypes, while under physiological conditions the difference between them was insignificant. Under drought conditions, an increase in the carotenoids to chlorophylls ratio in the original genotypes, compared to transgenic plants, was also established. A comparative analysis of the morphometric indicators of the main shoot at full maturity showed that under physiological conditions, the plants of transgenic lines did not differ from the plants of the original genotypes in spike length, however, they prevailed in terms of the main shoot stem height and the length of the roots.

Keywords: Triticum aestivum, transgenic plants, ornithine-d-aminotransferase gene, soil drought, proline, photosynthetic pigments, growth parameters

Fìzìol. rosl. genet.
2023, vol. 55, no. 1, 58-73

Full text and supplemented materials

Free full text: PDF  

References

1. Shewry, P.R. (2009). Wheat. Journal of Experimental Botany, 60, No. 6, pp. 1537-1553. https://doi.org/10.1093/jxb/erp058

2. Wang, K., Liu, H., Du, L. & Ye, X. (2017). Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnology Journal, 15, pp. 614-623. https://doi.org/10.1111/pbi.12660

3. Joshi, R., Anwar, K., Das, P., Singla-Pareek, S. & Pareek, A. (2017). Overview of methods for assessing salinity and drought tolerance of transgenic wheat lines. Wheat Biotechnology. Springer: New York. https://doi.org/10.1007/978-1-4939-7337-8_5

4. Hiei, Y., Ishida, Y. & Komari, T. (2014). Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Frontiers in Plant Science, 7, No. 5, p. 628. https://doi.org/10.3389/fpls.2014.00628

5. Anwar, A., Wang, K. & Wang, J. (2021). Expression of Arabidopsis ornithine aminotransferase (AtOAT) encoded gene enhances multiple abiotic stress tolerances in wheat. Plant Cell Reports, 40, No. 7, pp. 1155-1170. https://doi.org/10.1007/s00299-021-02699-0

6. Arabia, S., Shah, M., Sami, A., Ghosh, A. & Islam, T. (2021). Identification and expression profiling of proline metabolizing genes in Arabidopsis thaliana and Oryza sativa to reveal their stress-specific transcript alteration. Physiology and Molecular Biology of Plants, 27, No. 7, pp. 1469-1485. https://doi.org/10.1007/s12298-021-01023-0

7. Dubrovna, O.V., Stasik, O.O., Priadkina, G.O. Zborivska, O.V. & Sokolovska-Sergiienko, O.G. (2020). Resistance of genetically modified wheat plants, containing a double-stranded RNA suppressor of the proline dehydrogenase gene, to soil moisture deficiency. Agricultural Science and Practice, 7, No. 2, pp. 24-34. https://doi.org/10.15407/agrisp7.02.024

8. Mykhalska, S.I., Komisarenko, A.G. & Kurchii, V.M. (2021). Genes of proline metabolism in biotechnology of increasing wheat osmostability. Faktory eksperymentalnoy evolyutsiyi orhanizmiv, 28, pp. 94-99 [in Ukrainian]. https://doi.org/10.7124/FEEO.v28.1382

9. Ghosh, U.K., Islam, M.N., Siddiqui, M.N., Cao, X. & Khan, M.A.R. (2022). Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biology, 24, No. 2, pp. 227-239. https://doi.org/10.1111/plb.13363

10. Hossain, M.A., Hoque, M.A., Burritt, D.J. & Fujita, M. (2014). Proline protects plants against abiotic oxidative stress: biochemical and molecular mechanisms. Oxidative Damage to Plants. Antioxidant Networks and Signaling: Ahmad P. (ed.). Academic Press is an imprint of Elsevier, pp. 477-521. https://doi.org/10.1016/B978-0-12-799963-0.00016-2

11. Kolupaev, Yu.E., Vainer, A.A. & Yastreb, T.O. (2014). Proline: physiological functions and regulation of its content in plants under stress conditions. Visnyk Kharkivskoho natsionalnoho ahrarnoho universytetu. Seriia Biolohiia, 2, No. 32, pp. 6-22 [in Russian]. https://repo.btu.kharkov.ua//handle/123456789/9047

12. Meena, M., Divyanshu, K., Kumar, S., Swapnil, P., Andleeb, Z., Vaishali, S., Mukesh, Y. & Upadhyay, R. (2019). Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, 5, No. 12, p. 02952. https://doi.org/10.1016/j.heliyon.2019.e02952

13. Mansour, M.M.F. & Ali, E.F. (2017). Evaluation of proline functions in saline conditions. Phytochemistry, 140, pp. 52-68. https://doi.org/10.1016/j.phytochem.2017.04.016

14. Tishchenko, E.N. (2013). Genetic engineering with use of L-proline metabolism genes for increase the of plants osmotolerance. Fyzyolohyia rastenyi y henetyka, 45, No. 6, pp. 488-500 [in Ukrainian]. http://dspace.nbuv.gov.ua/handle/123456789/159371

15. Carvalho, K., Campos, M.K., Domingues, D., Pereira, L. & Vieira, L. (2013). The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Molecular Biology Reports, 40, pp. 3269-3279. https://doi.org/10.1007/s11033-012-2402-5

16. Chen, C., Cui, X., Zhang, P., Wang, Z. & Zhang, J. (2021). Expression of the pyrroline-5-carboxylate reductase (P5CR) gene from the wild grapevine Vitis yeshanensis promotes drought resistance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 168, pp. 188-201. https://doi.org/10.1016/j.plaphy.2021.10.004

17. Anwar, A., She, M., Wang, K. & Ye, X. (2020). Cloning and molecular characterization of Triticum aestivum ornithine amino transferase (TaOAT) encoding genes. BMC Plant Biology, 20, pp. 187-187. https://doi.org/10.1186/s12870-020-02396-2

18. Stranska, J., Kopecny, D., Kopecna, M., Snйgaroff, J. & Sebela, M. (2010). Biochemical characterization of pea ornithine-d-aminotransferase: Substrate specificity and inhibition by di- and polyamines. Biochimie, 92, No. 8, pp. 940-948. https://doi.org/10.1016/j.biochi.2010.03.026

19. Anwar, A., She, M., Wang, K. & Ye, X. (2018). Biological roles of ornithine aminotransferase (OAT) in plant stress tolerance: present progress and future perspectives. International Journal of Molecular Sciences, 19, p. 3681. https://doi.org/10.3390/ijms19113681

20. Szabados, L. & Savoure, A. (2009). Proline: A multifunctional amino acid. Trends in Plant Science, 15, pp. 89-97. https://doi.org/10.1016/j.tplants.2009.11.009

21. Liu, C., Xue, Z., Tang, D., Shen, Y., Shi, W., Ren, L., Du, G., Li, Y. & Chenget, Z. (2018). Ornithine-d-aminotransferase is critical for floret development and seed setting through mediating nitrogen reutilization in rice. Plant Journal, 96, No. 4, pp. 842-854. https://doi.org/10.1111/tpj.14072

22. Sharma, S., Villamor, J.G. & Verslues, P.E. (2011). Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiology, 157, pp. 292-304. https://doi.org/10.1104/pp.111.183210

23. Liang, X., Zhang, L., Natarajan, S.K. & Becker, D.F. (2013). Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 19, pp. 998-1011. https://doi.org/10.1089/ars.2012.5074

24. Kalamaki, M.S., Merkouropoulos, G. & Kanellis, A.K. (2009). Can ornithine accumulation modulate abiotic stress tolerance in Arabidopsis? Plant Signal Behav, 4, No. 11, pp. 1099-1101. https://doi.org/10.4161/psb.4.11.9873

25. Kolupaev, Y.E. & Kokorev, O.I. (2019). Participation of polyamines in regulation of redox homeostasis in plants. Visnyk Kharkivskoho natsionalnoho ahrarnoho universytetu. Seriia Biolohiia, 1, No. 46, pp. 6-22 [in Russian]. https://doi.org/10.35550/vbio2019.01.006

26. Wu, L., Fan, Z., Guo, L., Li, Y., Zhang, W., Qu, L. & Chen, Z. (2003). Over-expression of an Arabidopsis d-OAT gene enhances salt and drought tolerance in transgenic rice. Chinese Science Bulletin, 48, No. 23, pp. 2594-2600. https://link.springer.com/article/10.1360/03wc0218 https://doi.org/10.1360/03wc0218

27. Roosens, N.H., Bitar, F.A. & Loenders, K. (2002). Overexpression of ornithine-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Molecular Breeding, 9, No. 2, pp. 73-80. https://doi.org/10.1023/A:1026791932238

28. Funck, D., Stadelhofer, B. & Koch, W. (2008). Ornithine-delta-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biology, 8, No. 1, p. 40. https://doi.org/10.1186/1471-2229-8-40

29. Gerasimova, S.V., Kolodyazhnaya, Ya.S., Titov, S.E., Romanova, A.V., Koval', V.S., Kochetov, A.V. & Shumnyi, V.K. (2010). Tobacco transformants expressing the Medicago truncatula ornithine aminotransferase cDNA. Russkyi zhurnal henetyky, 46, No. 7, pp. 1000-1003 [in Russian]. https://doi.org/10.1134/S102279541007015X

30. Goncharuk, O.M., Bavol A.V. & Dubrovna O.V. (2015). Agrobacterium-mediated transformation of wheat with ornithine-aminotransferase gene by an in planta method. Faktory eksperymentalnoy evolyutsiyi orhanizmiv, 17, pp. 131-135 [in Ukrainian]. http://dspace.nbuv.gov.ua/ handle/123456789/177493

31. Komisarenko, A.G., Mykhalska, S.I. & Kurchii, V.M. (2019). Productivity of winter wheat plants with the additional copy of ornithine-d-aminotransferase gene under water deficit conditions. Faktory eksperymentalnoy evolyutsiyi orhanizmiv, 25, pp. 247-252 [in Ukrainian]. https://doi.org/10.7124/FEEO.v25.1171

32. Dubrovna, O.V., Priadkina, G.O., Mykhalska, S.I. & Komisarenko, A.G. (2021). Water deficiency tolerance of genetically modified common wheat cv. Zymoyarka, containing a heterologous ornithine-d-aminotransferase gene. Agricultural Science and Practice, 8, No. 1, pp. 25-39. https://doi.org/10.15407/agrisp8.01.014

33. Slyvka, L.V. & Dubrovna, O.V. (2021). Genetic transformation of promising genotypes of winter soft wheat by the in planta method. Faktory eksperymentalnoy evolyutsiyi orhanizmiv, 28, pp. 106-111 [in Ukrainian]. https://doi.org/10.7124/FEEO.v28.1384

34. Sidorov, V. & Duncan, D. (2009). Agrobacterium-mediated maize transformation: immature embryos versus callus. Methods in Molecular Biology, 526, pp. 47-58. https://doi.org/10.1007/978-1-59745-494-0_4

35. Bates, L.S., Waldren, R.P. & Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, pp. 205-207. https://doi.org/10.1007/BF00018060

36. Madan, S., Nainawatee, H.S., Jain, R.K. & Chowdhury, J.B. (1995). Proline and proline metabolizing enzymes in-vitro selected NaCl-tolerant. Annals of Botany, 76, No. 1, pp. 51-57. https://www.jstor.org/stable/42764614 https://doi.org/10.1006/anbo.1995.1077

37. Wellburn, A.P. (1994). The spectral determination of chlorophyll a and b, as well as carotenoids using various solvents with spectrophotometers of different resolution. Journal Plant Physiology, 144, No. 3, pp. 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2

38. Barutcular, C., Yildirim, M., Koc, M., Akinci, C., Toptas, I., Albayrak, O., Tanrikulu, A. & El Sabagh, A. (2016). Evaluation of SPAD chlorophyll in spring wheat genotypes under different environments. Fresenius Environmental Bulletin, 25, No. 4, pp. 1258-1266 ref.35.

39. Yasir, T.A., Wasaya, A., Hussain, M., Ijaz, M., Farooq, M., Farooq, O., Nawaz, A. & Hu, Y.G. (2019). Evaluation of physiological markers for assessing drought tolerance and yield potential in bread wheat. Physiology and Molecular Biology of Plants, 25, No. 5, pp. 1163-1174. https://doi.org/10.1007/s12298-019-00694-0

40. Javed, A., Ahmad, N., Ahmed, J., Hameed, A., Ashraf, M.A., Zafar, S.A., Maqbool, A., Al-Amrah, H., Alatawi, H.A., Al-Harbi, M.S. & Ali, E.F. (2022). Grain yield, chlorophyll and protein contents of elite wheat genotypes under drought stress. Journal of King Saud University - Science, 34, No. 7. https://doi.org/10.1016/j.jksus.2022.102279

41. Sharma, S. & Verslues, P.E. (2010). Mechanisms independent of abscisic acid (ABA) or proline feedback have a pre-dominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant, Cell & Environment, 33, No. 11, pp. 1838-1851. https://doi.org/10.1111/j.1365-3040.2010.02188.x

42. Ahmed, H.G.M.-D., LI, M.-J., Khan, S.H. & Kashif, M. (2019). Early selection of bread wheat genotypes using morphological and photosynthetic attributes conferring drought tolerance. Journal of Integrative Agriculture, 18, No. 11, pp. 2483-2491. https://doi.org/10.1016/S2095-3119(18)62083-0

43. le Roux, M.L., Burger, N.F.V., Vlok, M., Kunert, K.J., Cullis, C.A. & Botha, A-M. (2020). Wheat line «RYNO3936» is associated with delayed water stress-induced leaf senescence and rapid water-deficit stress recovery. Frontiers in Plant Sciece, 11, p. 1053. https://doi.org/10.3389/fpls.2020.01053

44. Yue, Z., Shen, Y., Chen, Y., Liang, A., Chu, C., Chen, C. & Sun, Z. (2019). Microbiological insights into the stress-alleviating property of an endophytic Bacillus altitudinis WR10 in wheat under low-phosphorus and high-salinity stresses. Microorganisms, 7, No. 11, p. 508. https://doi.org/10.3390/microorganisms7110508