Controlling lodging in cereals and other crops with retardants is an important part of achieving high productivity and profitability in agricultural production. In addition to their retardant activity and numerous morphological and physiological effects, their research in the area of xenobiotic metabolism regulation is promising, especially when used in formulations with other pesticides and agrochemicals. However, the effect of cyclohexanedione derivatives on stem shortening, particularly on the reduction of upper internodes from the spike, can reduce carbon pools that are redistributed to generative organs with a corresponding reduction in productivity. This effect can be particularly pronounced with high doses of retardant and moisture deficit in the second half of the growing season. The effect of the well-known adjuvant ammonium sulphate on the efficacy of trinexapac-ethyl on durum wheat (Triticum aestivum L.) plants of the Zymoyarka variety under foliar application was studied. It was shown that the height of wheat plants under the effect of a growth regulator (retardant Moddus, 0.6 l/ha) in the BBCH 37 stage was 26 % lower than the untreated control and 18.8 cm lower than plants treated with ammonium sulphate. Combined application of ammonium sulphate with trinexapac-ethyl on wheat variety Zymoyarka reduced plant height by 35.8 % (23.7 cm) compared to the water-treated control. The reduction in plant height was due to shortening of the length of the 4th and 5th internodes, up to 53—57 % compared to the untreated control. It was found that treatment of wheat plants of the Zymoyarka variety with the retardant in combination with ammonium sulphate led to some improvement in the assimilative capacity of the leaves by increasing the chlorophyll content and prolonging the growing season, and increasing the weight of 1000 grains. The weight of 1000 grains in the combined application of trinexapac-ethyl + ammonium sulphate was 35.5 g, in the control — 31.3 g. Thus, trinexapac-ethyl in combination with ammonium sulphate can be used to increase wheat productivity under limited mineral nutrition. Taking into account the possible negative effect of high doses of TE on productivity, the use of ammonium sulphate allows the necessary levels of lodging control to be achieved at moderate doses of the retardant. In addition, foliar application of ammonium can be part of the nitrogen nutrition of the crop during the growing season.
Keywords: wheat (Triticum aestivum L.), trinexapac-ethyl, ammonium sulphate
Full text and supplemented materials
Free full text: PDFReferences
1. Morgun, V.V., Schwartau, V.V. & Kiriziy, D.A. (2010). Physiological bases of formation of high productivity of grain cereals. Fyzyolohyia y byokhymyia kulturnukh rastenyi, 42, No. 5, pp. 371-392 [in Russian].
2. March, S.R., Martins, D. & McElroy, J.S. (2013). Growth inhibitors in turfgrass. Planta Daninha, 31 (3), pp. 733-747. https://doi.org/10.1590/S0100-83582013000300025
3. Matysiak, K. (2006). Influence of trinexapac-ethyl on growth and development of winter wheat. J. Plant Protect. Res., 46, pp. 133-143.
4. Simmons, D.B., Grey, T.L., Faircloth, W., Vencill1, W.K. & Webster, T.M. (2017). Trinexapac-ethyl winter wheat (Triticum aestivum L.) cultivar evaluations with variable rates of nitrogen. J. Exp. Agr. Int., 16 (5), pp. 1-9. https://doi.org/10.9734/JEAI/2017/33647
5. Benetoli da Silva, T.R., Schmidt, R., Tavares da Silva, C.A., Nolla, A., Favero, F. & Poletine, J.P. (2011). Effect of trinexapac-ethyl and nitrogen fertilization on wheatgrowth and yield. J. Food, Agr. and Environ., 9, pp. 596-598.
6. Koch, F., Aisenberg, G., Monteiro, M., Pedo, T., Zimmer, P., Villela, F. & Aumonde, T. (2017). Growth of wheat plants submitted to the application of the growth regulator trinexapac-ethyl and vigor of the produced seeds. Agrociencia Uruguay, 21 (1), pp. 24-32. https://doi.org/10.31285/AGRO.21.1.4
7. Pricinotto, L.F., Zucareli, C., Fonseca, I.C.B., Oliveira, M.A., Ferreira, A.S. & Spolaor, L.T. (2015). Trinexapac-ethyl in the vegetative and reproductive performance of corn. Afr. J. Agr. Res., 10 (14), pp. 1735-1742.
8. Trethewey, J.A.K., Rolston, M.P., McCloy, B.L. & Chynoweth, R.J. (2016). The plant growth regulator, trinexapac-ethyl, increases seed yield in annual ryegrass (Lolium multiflorum Lam.). New Zealand J. Agr. Res., 59 (2), pp. 113-121. https://doi.org/10.1080/00288233.2015.1134590
9. Shekoofa, A. & Emam, Y. (2008). Effects of nitrogen fertilization and plant growth regulators (PGRs) on yield of wheat (Triticum aestivum L.) cv. Shiraz. J. Agr. Sci. and Technol., 10, pp. 101-108.
10. Kong, E., Liu, D., Guo, X., Yang, W., Sun, J., Li, X., Zhan, K., Cui, D., Lin, J. & Zhang, A. (2013). Anatomical and chemical characteristics associated with lodging resistance in wheat. Crop J., 1, pp. 43-49. https://doi.org/10.1016/j.cj.2013.07.012
11. Wang, D., Ding, W.H., Feng, S.W., Hu, T.Z., Li, G., Li, X.H., Yang, Y.Y. & Ru, Z.G. (2016). Stem characteristics of different wheat varieties and its relationship with lodging-resistance. The J. Appl. Ecol., 27, pp. 1496-1502.
12. Ervin, E.H. & Koski, A.J. (2001). Trinexapac-ethyl increases kentucky bluegrassleaf cell density and chlorophyll concentration. J. Amer. Soc. Hort. Sci., 36 (4), pp. 787-789. https://doi.org/10.21273/HORTSCI.36.4.787
13. Zagonel, J. & Fernandes, E.C. (2007). Rates and application times of growth reducer affecting wheat cultivars at two nitrogen rates. Planta Daninha, 25, pp. 331-339. https://doi.org/10.1590/S0100-83582007000200013
14. Rademacher, W. (2014). Prohexadione-Ca and trinexapac-ethyl: similarities in structure but differences in biological action. Acta Hortic, 1042, рр. pp. 33-41. https://doi.org/10.17660/ActaHortic.2014.1042.3
15. Hedden, P. & Thomas, S.G. (2012). Gibberellin biosynthesis and its regulation. Biochem. J., 444 (1), pp. 11-25. https://doi.org/10.1042/BJ20120245
16. Mykhalska, L.M., Makoveychuk, T.I. & Schwartau, V.V. (2020). Mode of physiological activity of acylcyclohexadione retardants. Biosystems Diversity, 28 (4), рр. 411-418. https://doi.org/10.15421/012053
17. Chastain, T.G., Young III, W.C., Silberstein, T.B. & Garbacik, C.J. (2014). Performance of trinexapac-ethyl on Lolium perenne seed crops in diverse lodging environments. Field Crops Res., 157, pp. 65-70. https://doi.org/10.1016/j.fcr.2013.12.002
18. Adams, R., Kerber, E., Pfister, K. & Weiler, E.W. (1992). Studies on the action of the new growth retardant CGA163'935 (Primo). In Progress in plant growth regulations. Karssen, C.M., van Loon, L.C. & Vreugdenhil, D. (Eds). (pp. 818-827). Amsterdam: Kluwer Academics. https://doi.org/10.1007/978-94-011-2458-4_100
19. Beasley, J.S., Branham, B.E. & Ortiz-Ribbing, L.M. (2005). Trinexapac-ethyl affects Kentucky bluegrass root architecture. J. Amer. Soc. Hort. Sci., 40 (5), pp. 1539-1542. https://doi.org/10.21273/HORTSCI.40.5.1539
20. Heckman, N.L., Horst, G.L. & Gaussoin, R.E. (2001). Trinexapac-ethy influences specific leaf weight and chlorophyll content of Poa pratensis. Int. Turfgrass Soc. Res. J., 9, pp. 287-290.
21. Heckman, N.L., Horst, G.L., Gaussoin, R.E. & Tavener, B.T. (2002). Trinexapac-ethyl influence on cell membrane thermostability of Kentucky bluegrass leaf tissue. Sci. Hort., 92 (2), pp. 183-186. https://doi.org/10.1016/S0304-4238(01)00283-7
22. Elansarya, H.O. & Salem, M.Z.M. (2015). Morphological and physiological res-ponses and drought resistance enhancement of ornamental shrubs by trinexapac-ethyl application. Sci. Hort., 189, pp. 1-11. https://doi.org/10.1016/j.scienta.2015.03.033
23. McCann, S.E. & Huang, B. (2007). Effects of trinexapac-ethyl foliar application on creeping bentgrass responses to combined drought and heat stress. Crop Sci., 47 (5), pp. 2121-2128. https://doi.org/10.2135/cropsci2006.09.0614
24. Xu, C. & Huang, B. (2011). Proteins and metabolites regulated by trinexapac-ethyl in relation to drought tolerance in Kentucky bluegrass. J. Plant Growth Regul., 31, pp. 25-37. https://doi.org/10.1007/s00344-011-9216-x
25. Sattar, А., Cheema, M.A., Sher, A., Abbas, T., Ijaz, M., Ul-Allah, S., Butt, М., Qayyum, А. & Hussain, M. (2019). Exogenously applied trinexapac-ethyl improves photosynthetic pigments, water relations, osmoregulation and antioxidants defense mechanism in wheat under salt stress. Cereal Res. Commun., 47, pp. 430-441. https://doi.org/10.1556/0806.47.2019.20
26. Faria, L., Silva, S. & Lollato, R. (2022). Nitrogen and trinexapac-ethyl effects on wheat grain yield, lodging and seed physiological quality in southern Brazil. Exp. Agr., 58, E21. https://doi.org/10.1017/S0014479722000217
27. Miziniak, W., Matysiak, K. & Kaczmarek, S. (2017). Studies on trinexapac-ethyl dose reduction by combined application with adjuvants in spring barley. J. Plant Protect. Res., 5 (1), рр. 36-42. https://doi.org/10.1515/jppr-2017-0005
28. Fernandes, C.H. dos S., Arruda, K.M.A., Couto, A.P.S., Zucareli, C. & Fonseca, I.C. de B. (2022). Doses and application times of trinexapac-ethyl on the industrial quality of white oat grains. Semina: Cienc. Agrar. Londrina, 43 (6), pp. 2691-2706. https://doi.org/10.5433/1679-0359.2022v43n6p2691
29. Bender, A. (2021). Effect of plant growth regulator and additional nitrogen fertilization in spring on the seed yield and seed quality of timothy (Phleum pratense L.). Agraarteadus, 32 (1), pp. 17-24. https://doi.org/10.15159/jas.21.02
30. Ferrari, S., do Valle Polycarpo, G., Vargas, P.F., Fernandes, A.M., Luis Oliveira Cunha, M. & Pagliari, P. (2022). Mix of trinexapac-ethyl and nitrogen application to reduce upland rice plant height and increase yield. Plant Growth Regul., 96 (1), 209-219. https://doi.org/10.1007/s10725-021-00770-0
31. Udding, J., Gelang-Alfredson, J. & Pieijel, H. (2007). Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Res., 91, pp. 37-46. https://doi.org/10.1007/s11120-006-9077-5
32. Fiorentini, M., Zenobi, S., Giorgini, E., Basili, D., Conti, C., Pro, C., Monaci, E. & Orsini, R. (2019). Nitrogen and chlorophyll status determination in durum wheat as influenced by fertilization and soil management: Preliminary results. PLoS One, 14 (11), e0225126. doi: 10.1371/journal.pone.0225126. https://doi.org/10.1371/journal.pone.0225126
33. Fioreze, S.L. & Rodrigues, J.D. (2012) Efeito da densidade de semeadura e de reguladores vegetais sobre os caracteres morfofisiologicos da folha bandeira do trigo. Rev. Bras. Cienc. Agrar., 7 (1), pp. 89-96. https://doi.org/10.5039/agraria.v7i1a1594
34. Skudra, I. & Ruza, A. (2017). Effect of nitrogen and sulphur fertilization on chlorophyll content in winter wheat tea. Rural. Sustain. Res., 37 (332), pp. 29-37. https://doi.org/10.1515/plua-2017-0004
35. Espindula, M.C., Rocha, V.C., Fontes, P.S.R. & Silva, L.T. (2009). Effect of Nitrogen and Trinexapac-Ethyl Rates on the SPAD index of wheat leaves. J. Plant Nutr., 32, pp. 1956-1964. https://doi.org/10.1080/01904160903245113
36. Kupke, B.M., Tucker, M.R., Able, J.A. & Porker, K.D. (2022). Manipulation of Barley Development and Flowering Time by Exogenous Application of Plant Growth Regulators. Front. Plant Sci., 12, 694424. https://doi.org/10.3389/fpls.2021.694424
37. Rokhafrooz, K., Emam, Y. & Pirasteh-Anosheh, H. (2016). The effect of chlormequat chloride on yield and components of three wheat cultivars under drought stress conditions. J. of Crop Produktion and Processing., 6 (20), pp. 111-123 [In Persian]. https://doi.org/10.18869/acadpub.jcpp.6.20.111
38. Subedi, M., Karimi, R., Wang, Z., Graf, R.J., Mohr, R.M., O'Donovan, J.T., Brandt, S. & Beres, B.L. (2021). Winter cereal responses to dose and application timing of trinexapac-ethyl. Crop Sci., 61 (4), pp. 2722-2732. https://doi.org/10.1002/csc2.20472
39. Spolidorio, F. & Lollato, R. (2019). Plant growth regulators to decrease wheat height in high fertility scenarios. Kans. Agric. Exp. Stn. Res. Rep., 5 (6), pp. 1-6. https://doi.org/10.4148/2378-5977.7789
40. Zhang, Y., Su, Sh., Tabori, M., Yu, J., Chabot, D., Baninasab, B., Wang, X., Ma, B.L., Li, C. & Khanizadeh, S. (2017). Effect of selected plant growth regulators on yield and stem height of spring wheat in Ontario. J. Agr. Sci., 9 (12), pp. 30-42. https://doi.org/10.5539/jas.v9n12p30
41. Qin, R., Noulas, C., Wysocki D., Liang, X., Wang. G. & Lukas, S. (2020). Application of plant growth regulators on soft white winter wheat under different nitrogen fertilizer scenarios in irrigated fields. Agriculture, 10 (7), 305. https://doi.org/10.3390/agriculture10070305
42. Harasim, E., Weselowski, M., Kwiatkowski, C., Harasim, P., Staniak, M. & Feledyn-Szewczyk, B. (2016). The contribution of yield components in determining the productivity of winter wheat (Triticum aestivum L.). Acta Agrobot., 69, 3, 1675. https://doi.org/10.5586/aa.1675
43. Grijalva-Contreras, R.L., Macias-Duarte, R., Martinez-Diaz, G., Robles-Contreras, F. & Nunez-Ramirez, F. (2012). Effects of trinexapac-ethyl on different wheat varieties under desert conditions of Mexico. Agric. Sci., 3, pp. 658-662. https://doi.org/10.4236/as.2012.35079
44. Hayat, Y., Hussain, Z., Khalil, S.K., Khan, Z.K., Ikramullah, Ali M., Shah T. & Shah, F. (2015). Effects of nitrogen and foliar sulphur applications on the growth and yield of two wheat varieties grown in Northern Pakistan. Res. J. Agr. Biol. Sci., 10 (4), pp. 139-145.
45. Klikocka, H., Cybulska, M., Barczak, B., Narolski, B., Szostak, B., Kobialka, A., Nowak, A. & Wojcik, E. (2016). The effect of sulphur and nitrogen fertilization on grain yield and technological quality of spring wheat. Plant Soil Environ., 62 (5), pp. 230-236. https://doi.org/10.17221/18/2016-PSE
46. Peake, A.S., Bell, K.L., Fischer, R.A., Gardner, M., Das, B.T., Poole, N. & Mumford, M. (2020). Cultivar ґ management interaction to reduce lodging and improve grain yield of irrigated spring wheat: Optimising plant growth regulator use, N application timing, row spacing and sowing date. Front. Plant Sci., 11, 401. https://doi.org/10.3389/fpls.2020.00401