Fiziol. rast. genet. 2022, vol. 54, no. 1, 26-39, doi: https://doi.org/10.15407/frg2022.01.026

The use of the nodule bacteria as a remedy for expanding adaptive possibilities of soybean under drought conditions

Vorobey N.A., Pukhtaievych P.P., Kots T.A., Kots S.Ya.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

Symbiotic systems created by soybean variety Almaz (Glycine max (L.) Merr.) and strains of nodule bacteria Bradyrhizobium japonicum 646, РС09, В157 with were investigated under different water supply are investigated (30 and 60 % field capacity, FC). It was shown that drought inhibited the process of nodulation, depending on the functional and adaptive capacity of each of the microsymbionts. The number and mass of root nodules on plants decreased compared to control plants under insufficient watering. Insufficient watering (30 % FC) negatively impacted the functioning of symbiotic systems Glycine max (L.) Merr.—Bradyrhizobium japonicum depending on the drought duration. Strains of Bradyrhizobium japonicum PC09 and B157 formed more drought-tolerant symbiotic systems. They had higher nitrogen fixing activity under reduced moisture supply (30 % FC) and during the recovery period compared to the Bradyrhizobium japonicum 646 strain. It was shown that with increasing drought duration (from the 3rd to the 10th day) the difference in physiological and symbiotic parameters between treated and control plants increased, but with the resumption of watering they partially leveled depending on the inoculant strain.

Keywords: soybean (Glycine max (L.) Merr.), nitrogen fixation, efficiency, symbiosis, rhizobia, water supply

Fiziol. rast. genet.
2022, vol. 54, no. 1, 26-39

Full text and supplemented materials

Free full text: PDF  

References

1. Prischepa, Ya. (21.06.2021). Droughts and landslides of natural areas. How global climate changes will affect Ukraine [Electronic resource]. Acess mode: https://suspilne.media/133665-posuhi-ta-zsuv-prirodnih-zon-ak-globalni-zmini-klimatu-vplinut-na-ukrainu/ [in Ukrainian].

2. Reyer, C., Bachinger, J., Bloch, R., Hattermann, F.F., Ibisch, P.L., Kreft, S., Lasch, P., Lucht, W., Nowicki, C., Spathelf, P., Stock, M. & Welp, M. (2012). Climate change adaptation and sustainable regional development: a case study for the Federal State of Brandenburg, Germany. Regional Environmental Change, 12, pp. 523-542. https://doi.org/10.1007/s10113-011-0269-y

3. Challinor, A., Ewert, F., Arnold, S., Simelton, E. & Fraser, E. (2009). Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation. J. Exp. Bot., 60, Iss. 10, pp. 2775-2789. https://doi.org/10.1093/jxb/erp062

4. Sadras, V.O. & Milroy, S.P. (1996). Soil-water thresholds for the responses of lea expansion and gas exchange: a review. Field Crops Research, 47, No. 2-3, pp. 253-266. https://doi.org/10.1016/0378-4290(96)00014-7

5. Taiz, L. & Zeigez, F. (2006). Plant Physiology. Sunderland: Sinauer Associates.

6. Gil-Quintana, E., Larrainzar, E., Seminario, A., Diaz-Leal, J.L., Alamillo, J.M., Pineda, M., Arrese-Igor, C., Wienkoop, S. & Gonzalez, E.M. (2013). Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean. J. Exp. Bot., 64, Is. 8, pp. 2171-2182. https://doi.org/10.1093/jxb/ert074

7. Berendsen, R.L., Pieterse, C.M. & Bakker, P.A. (2012). The rhizosphere microbiome and plant health. Trends in Plant Scien., 17, Is. 8, pp. 478-486. https://doi.org/10.1016/j.tplants.2012.04.001

8. Serraj, R. (2003). Effects of drought stress on legume symbiotic nitrogen fixation: Physiological mechanisms. Indian J. Exp. Biol., 41, No. 10. pp. 1136-1141.

9. Matamoros, M.A., Baird, L.M., Escuredo, P.R., Dalton, D.A., Minchin, F.R., Iturbe-Ormaetxe, I., Rubio, M.C., Moran, J.F., Gordon, A.J. & Becana, M. (1999). Stress-induced legume root nodule senescence. Physiological, biochemical and structural alternation. Plant Physiol., 121, Is. 1, pp. 97-111. https://doi.org/10.1104/pp.121.1.97

10. Apel, A. & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annual Review of Plant Biol., 55, pp. 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

11. Esfahani, M.N. & Mostajeran, A. (2011). Rhizobial strain involvement in symbiosis efficiency of chickpea-rhizobia under drought stress: plant growth, nitrogen fixation and antioxidant enzyme activities. Acta Physiol. Plant., 33, pp. 1075-1083. https://doi.org/10.1007/s11738-010-0635-2

12. Kots, S.Ya., Mykhalkiv, L.M., Mamenko, P.M. & Volkogon, M.V. (2011). The study of alfalfa-Sinorhizobium meliloti symbiosis productivity under different water conditions and the influence of the legume seed lectin. J. Agricult. Sci. and Technol., No. 3, pp. 454-457.

13. Staudinger, C., Mehmeti-Tershani, V., Gil-Quintana, E., Gonzalez, E.M., Hofhansl, F., Bachmann, G. & Wienkoop, S. (2016). Evidence for a rhizobia-induced drought stress response strategy in Medicago truncatula. J. Proteom., 136, pp. 202-213. https://doi.org/10.1016/j.jprot.2016.01.006

14. Marino, D., Frendo, P., Ladrera, R., Zabalza, A., Puppo, A., Arrese-Igor, C. & Gonzaмlez, E.M. (2008). Nitrogen fixation control under drought stress. Localized or systemic? Plant Physiol., 143, pp. 1968-1974. https://doi.org/10.1104/pp.107.097139

15. Kosenko, L.V., Mikhalkiv, L.M., Krugova, E.D., Mandrovskaia, N.M., Zatovskaia, T.V. & Kots, S.Ya. (2003). The biological activity of the Sinorhizobium meliloti glucan. Mikrobiologiia, No. 5, pp. 633-638 [in Russian].

16. Kots, S.Ya. Mykhalkiv, L.M. & Melnykova, N.M. (2003). Improving lucerne productivity under water stress by treatment with periplasmic glucan. Grassland Science in Europe, 8, pp. 649-652.

17. Pat. 102763 UA, IPC A01P 21/00, A01N 25/00, Method for improving nitrogen-fixing activity and productivity of the symbiotic systems alfalfa-Sinorhizobium meliloti, Kots, S.Ya., Mykhalkiv, L.M. & Berehovenko, S.K., Publ. 25.11.2015 [in Ukrainian].

18. Kiriziy, D.A., Veselovska, L.I. & Kots, S.Ya. (2014). The influence of drought on gas exchange of leaves of soybean inoculated by rhizobia under seed lectin application. Fiziol. rast. genet., 46, No. 6, pp. 498-506 [in Ukrainian].

19. Babosha, A.V. (2008). Inducible lectins and resistance of plants to pathogenic organisms and abiotic stresses. Biochemistry (Moscow), 73, No. 7, pp. 1007-1022 [in Russian]. https://doi.org/10.1134/S0006297908070109

20. Serraj, R., Sinclair, T.R. & Purcell, L.C. (1999). Symbiotic N2 fixation response to drought. J. Exp. Bot., 50, No. 331, pp. 143-155. https://doi.org/10.1093/jxb/50.331.143

21. Kyrychenko, O.V. (2019). Regulatory role of glucose- and galactose-containing aminosaccharides in the realization of the symbiotic and productive potential of soybean-rhizobium symbiosis under field drought conditions. Fiziol. rast. genet., 51, No. 3, pp. 241-256 [in Ukrainian]. https://doi.org/10.15407/frg2019.03.241

22. Mykolaievski, V.P., Sergienko, V.G. & Tytova, L.V. (2016). Inoculants influence on the symbiotic systems formation, diseases development and productivity of the different soybean cultivars. Microbiol. & Biotechnol., No. 3, pp. 57-68 [in Ukrainian]. https://doi.org/10.18524/2307-4663.2016.3(35).78032

23. Perez-Montaco, F., Jimenez-Guerrero, I., Del Cerro, P., Baena-Ropero, I., Lopez-Baena, F.J., Ollero, F.J., Bellogin, R., Lloret, J. & Espuny, R. (2014). The symbiotic biofilm of Sinorhizobium fredii SMH12, necessary for successful colonization and symbiosis of Glycine max cv Osumi, is regulated by quorum sensing systems and inducing flavonoids via NodD1. PLoS One, 9, No. 8, e105901. https://doi.org/10.1371/journal.pone.0105901

24. Kibido, T., Kunert, K., Makgopa, M., Greve, M. & Vorster, J. (2020). Improvement of rhizobium-soybean symbiosis and nitrogen fixation under drought. Food and Energy Security, 9, Is. 1, e177. https://doi.org/10.1002/fes3.177

25. Mabrouk, Ya. & Belhadj, O. (2012). Enhancing the biological nitrogen fixation of leguminous crops grown under stressed environments. African J. Biotechnol., 48, No. 11, pp. 10809-10815. https://doi.org/10.5897/AJB10.2170

26. Mhadhbi, H., Chihaoui, S., Mhamdi, R., Mnasri, B., Jebara, M. & Mhamdi, R. (2011). A highly osmotolerant rhizobial strain confers a better tolerance of nitrogen fixation and enhances protective activities to nodules of Phaseolus vulgaris under drought stress. African J. Biotechnol., 10, No. 22, pp. 4555-4563.

27. Creus, C.M., Sueldo, R.J. & Barassi, C.A. (2004). Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Canadian J. Bot., 82, No. 2, pp. 273-281. https://doi.org/10.1139/b03-119

28. Grodzinsky, A.M. & Grodzinsky, D.M. (1973). Brief guide to plant physiology. Kiev: Naukova Dumka [in Russian].

29. Netrusov, A.I., Egorova, M.A., Zaharchuk, L.M., Kolotilova, N.N., Kotova, I.B., Semenova, E.V., Tatarinova, N.Yu., Ugolkova, N.V., Tsavkelova, E.A., Bobkova, A.F., Bogdanov, A.G., Danilova, I.V., Dinarieva, T.Yu., Zinchenko, V.V., Ismailov, A.D., Kurakov, A.V., Maksimov, V.N., Milko, E.S., Nikitina, E.P., Ryizhkova, E.P., Semenov, A.M., Homyakova, D.V., Cherdyintseva, T.A. & Yudina, T.G. (2005). Microbiology workshop. Moscow: Akademija [in Russian].

30. Hardy, R.W.F., Holsten, R.D., Jackson, E.K. & Burns, R.C. (1968). The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol., 43, pp. 1855-1907. https://doi.org/10.1104/pp.43.8.1185

31. Morgun, V.V. & Kots, S.Ya. (2018). The role of biological nitrogen in nitrogen nutrition of plant. Visnyk NAN Ukrainy, 1, pp. 63-74 [in Ukrainian]. https://doi.org/10.15407/visn2018.01.062

32. Adamen, F.F., Vergunov, V.A., Lazer, P.N. & Vergunova, J.H. (2006). Agrobiological features of cultivation of soybean in Ukraine. Kyiv: Agrarna nauka [in Russian].