Under the conditions of pot experiment, the effect of soybean plants inoculation by various phytopathogens (WSMV, Acholeplasma laidlawii and Xantomonas axonopodis pv. glycines) and pre-sowing treatment with nanochelates of Mo was studied. Inhibition of leaves photosynthetic activity was established in all experimental variants. At the same time, the dark respiration rate increased in the variants with WSMV inoculation and bacterial pathogen, and presowing treatment with nanochelates of Mo and inoculation with WSMV. The leaf transpiration increased most significantly under inoculation of X. axonopodis pv. glycines and most significantly decreased under inoculation WSMV, as well as in variants presowing Mo treatment + WSMV, and presowing Mo treatment + X. axonopodis pv. glycines. In leaves of plants infected by phytoplasma and bacterial pathogen, content of phytohormones IAA and ABA decreased, and infected with WSMV — increased significantly. However, under presowing treatment of soybean by Mo nanochelates reduced content of both phytohormones in leaves was observed, which can be explained by the prolonged effect of elevated air temperature during the growing season, that during day reached 30 °C or more. Presowing treatment with Mo nanochelates under inoculation by phytoplasma and WSMV caused a decrease in the IAA and ABA content in leaves, while bacterial inoculation caused the decrease of IAA content with increase of ABA content in the leaves. Increase of phenolic compounds content in leaf tissues was observed in all experimental variants. Thus, under the conditions of combined stress, caused by elevated temperatures and phytopathogenic infection, treatment with Mo nanochelates performed a regulatory function in relation to plant metabolism, helping to increase resistance to the destructive effects of phytopathogenic infection.
Keywords: Acholeplasma laidlawii, phytoplasma, WSMV, Xantomonas axonopodis pv. glycines, photosynthesis, phytohormones, phenolic compounds
Full text and supplemented materials
Free full text: PDFReferences
1. Ohyama, T., Tewari, K., Ishikawa, S., Tanaka, K., Kamiyama, S., Ono, Y., Hatano, S., Ohtake, N., Sueyoshi, K., Hasegawa, H., Sato, T., Tanabata, S., Nagumo, Y., Fujita, Y. & Takahashi, Y. (2017). Role of nitrogen on growth and seed yield of soybean and a new fertilization technique to promote nitrogen fixation and seed yield soybean - the basis of yield, biomass and productivity. Minobu Kasai, Intech Open, pp. 153-185. https://doi.org/10.5772/66743
2. Petrichenko, V.F., Patika, V.P., Pasichnik, L.A., Zhitkevich, N.V., Gulyaeva, G.B., Tokovenko, I.P., Korobkova, K.S., Lazarenko, L.M., Gnatyuk, T.T., Litvinchuk, O.O., Zaharova, O.M., Kirilenko, L.V., Demchenko, O. A., Babenko, L.P., Kirichenko, A.M., KornIychuk, O.V., Ivanyuk, S.V., Kolisnik, S.I., Kobak, S.Ya., Zadorozhniy, V.S. Kots, S.Ya., Mamenko, P.M., Pisarenko, P.V., Bilyavska, L.G., Bilyavskiy, Yu.V., Sherepitko, D.V., Bzhozovska, A., Kalinichenko, A.V., Boyko, O.A. & Pida, S.V. (2016). Hvorobi soyi: monitoring, diagnostika, zahist. Za red. akad. NAAN V.F. Petrichenka, V.P. Patiki. Vinnitsya: Vindruk [in Ukrainian].
3. Cardoso, B.M., Lazarini, E., Moreira, A., Moraes, L.A.C., Santos, F.L.D. & Dameto, L.S. (2021). Effect of foliar molybdenum application on seed quality of soybean cultivars. Communications in Soil Science and Plant Analysis, 52, No. 6, pp. 666-672. https://doi.org/10.1080/00103624.2020.1862164
4. Kaiser, B.N., Gridley, K.L., Brady, J.N., Phillips, T. & Tyerman, S.D. (2005). The role of molybdenum in agricultural plant production. Ann. Bot., 96, Is. 5, pp. 745-754. https://doi.org/10.1093/aob/mci226
5. Rana, M.S., Bhantana, P., Imran, M., Saleem, M.H., Moussa, M.G., Khan, Z., Khan, I., Alam, M., Abbas, M., Binyamin, R., Afzal, J., Syaifudin, M., Din, I.U., Younas, M., Ahmad, I., Shah, Md. A. & Hu, Ch. (2020). Molybdenum potential vital role in plants metabolism for optimizing the growth and development. Ann Environ. Sci. Toxicol., 4, No. 1, pp. 32-44. https://doi.org/10.17352/aest.000024
6. Kaplunenko, V.G., Kosinov, N.V., Bovsunovskiy, A.N. & Chernyiy, S.A. (2008). Nanotehnologii v selskom hozyaystve. Zhurnal Zerno, No. 4, pp. 47-55 [in Russian].
7. Fotosintez i bioproduktivnost: metodyi opredeleniya (1989). Pod. red. A.T. Mokronosova. Moskov: Agropromizdat [in Russian].
8. Savinskiy, S.V., Kofman, I.Sh., Kofanov, V.I. & Stasevskaya, I.L. (1987). Metodicheskie podhody k opredeleniyu fitogormonov s pomoschyu spektrodensitometricheskoy tonkosloynoy hromatografii. Fiziol. i biohim. kult. rast., 19, No. 2, pp. 210-215 [in Russian].
9. Folin, O. & Ciocalteu, V. (1927). On tyrosine and tryptophane determinations in proteins. J. Biol. Chem., 73, No. 2, pp. 627-650. https://doi.org/10.1016/S0021-9258(18)84277-6
10. Singleton, V.L. & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdicphoungstic acid reagent. Amer. J. Enol. Vitic., 16, pp. 144-158.
11. Dospekhov, B.A. (1985). Metodika polevogo opyta. Moskov: Kolos [in Russian].
12. Shadchina, T.M., Gulyaev, B.I., Kiriziy, D.A., Stasik, O.O., Pryadkina, G.O. & Storozhenko, V.O. (2006). Regulation of photosynthesis and productivity of plants. Physiological and ecological aspects. Kyiv: Ukrainian Phytosociological Center [in Ukrainian].
13. Ohnishi, M., Furutani, R., Sohtome, T., Suzuki, T., Wada, S., Tanaka, S., Ifuku, K., Ueno, D. & Miyake, C. (2021). Photosynthetic parameters show specific responses to essential mineral deficiencies. Antioxidants (Basel), 10, No. 7, p. 996. https://doi.org/10.3390/antiox10070996
14. Imran, M., Hu, C., Hussain, S., Rana, M.S., Javaria, M.R., Aziz, A.O., Elyamine, A.M., Farag, M.A. & Sun, I.X. (2019). Molybdenum-induced effects on photosynthetic efficacy of winter wheat (Triticum aestivum L.) under different nitrogen sources are associated with nitrogen assimilation. Plant Physiol. Biochem., 141, pp. 154-163. https://doi.org/10.1016/j.plaphy.2019.05.024
15. Bambara, S. & Ndakidemi, P.A. (2009). Effects of Rhizobium inoculation, lime and molybdenum on photosynthesis and chlorophyll content of Phaseolus vulgaris L. Afr. J. Microbiol. Res., 3, No. 11, pp. 791-798. Available online http://www.academicjournals.org/ajmr
16. Qin, S., Hu, C., Tan, Q. & Sun, X. (2017). Effect of molybdenum levels on photosynthetic characteristics, yield and seed quality of two oilseed rape (Brassica napus L.) cultivars. Soil Science and Plant Nutrition, 63, No. 2, pp. 137-144. https://doi.org/10.1080/00380768.2017.1286232
17. Wu, S., Hu, C., Tan, Q., Nie, Z. & Sun, X. (2014). Effects of molybdenum on water utilization, antioxidative defense system and osmotic-adjustment ability in winter wheat (Triticum aestivum L.) under drought stress. Plant Physiol. Biochem., 83, pp. 365-374. https://doi.org/10.1016/j.plaphy.2014.08.022
18. Aspinwall, M.J., Drake, J.E., Courtney, Campany, Varhammar A., Ghannoum, O., Tissue, D.T., Reich, P.B. & Tjoelker, M.G. (2016). Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis. New Phytologist, 212, Is. 2, pp. 354-367. https://doi.org/10.1111/nph.14035
19. Ayub, G., Smith, R.A., Tissue, D.T. & Atkin, O.K. (2011). Impacts of drought on leaf respiration in darkness and light in Eucalyptus saligna exposed to industrial-age atmospheric CO2 and growth temperature. New Phytologist, 190, Is. 4, pp. 1003-1018. https://doi.org/10.1111/j.1469-8137.2011.03673.x
20. Sadok, W., Lopez, J.R. & Smith, K.P. (2021). Transpiration increases under high-temperature stress: Potential mechanisms, trade-offs and prospects for crop resilience in a warming world. Plant, Cell & Environment. Special Issue: Heat Waves, 44, No. 7, pp. 2102-2116. https://doi.org/10.1111/pce.13970
21. Murray, R.R., Emblow, M.S., Hetherington, A.M. & Foster, G.D. (2016). Plant virus infections control stomatal development. Sci Rep., 6, p. 34507. https://doi.org/10.1038/srep34507
22. McLachlan, D.H., Kopischke, M. & Robatzek, S. (2014). Gate control: guard cell regulation by microbial stress. New Phytol., 203, Is. 4, pp. 1049-1063. https://doi.org/10.1111/nph.12916
23. Zeng, W., Melotto, M. & He, S.Y. (2010). Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr Opin Biotechnol., 21, No. 5, pp. 599-603. https://doi.org/10.1016/j.copbio.2010.05.006
24. Emenecker, R.J. & Strader, L.C. (2020). Auxin-abscisic acid interactions in plant growth and development. Biomolecules, 10, No. 2, p. 281. https://doi.org/10.3390/biom10020281
25. Haruta, M., Gray, W.M. & Sussman, M.R. (2015). Regulation of the plasma membrane proton pump (H+-ATPase) by phosphorylation. Curr Opin Plant Biol., 28, pp. 68-75. https://doi.org/10.1016/j.pbi.2015.09.005
26. Takahashi, K., Hayashi, K. & Kinoshita, T. (2012). Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol., 159, No. 2, pp. 632-641. https://doi.org/10.1104/pp.112.196428
27. Denance, N., Sanchez-Vallet, A., Goffner, D. & Molina, A. (2015). Disease resistance or growth: The role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science, 4, p. 155. https://doi.org/10.3389/fpls.2013.00155
28. Balfagon, D., Zandalinas, S.I. & Gomez-Cadenas, A. (2019). High temperatures change the perspective: Integrating hormonal responses in citrus plants under co-occurring abiotic stress conditions. Physiol. Plant, 165, Is. 2, Special Issue: Stress Combination, pp.183-197. https://doi.org/10.1111/ppl.12815
29. Suzuki, N., Rivero, R.M., Shulaev, V., Blumwald, E. & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytol., 203, No. 1, pp. 32-43. https://doi.org/10.1111/nph.12797
30. Suzuki, N., Bassil, E., Hamilton, J.S., Inupakutika, M.A., Zandalinas, S.I., Tripathy, D., Luo, Y., Dion, E., Fukui, G., Kumazaki, A., Nakano, R., Rivero, R.M., Verbeck, G.F., Azad, R.K., Blumwald, E. & Mittler, R. (2016). ABA is required for plant acclimation to a combination of salt and heat stress. PLoS One, 11, No. 1, e0147625. https://doi.org/10.1371/journal.pone.0147625
31. Babenko, L.M., Smirnov, O.E., Romanenko, K.O., Trunova, O.K. & Kosakivska, I.V. (2019). Phenolic compounds in plants: biogenesis and functions. Ukr. Biochem. J., 91, Is. 3, pp. 5-18. https://doi.org/10.15407/ubj91.03.005
32. Kumar, S., Abedin, M.M., Singh, A.K. & Das, S. (2020). Role of phenolic compounds in plant-defensive mechanisms. In: Lone, R., Shuab, R., Kamili, A. (eds.). Plant Phenolics in Sustainable Agriculture. Springer, Singapore, pp. 517-532. https://doi.org/10.1007/978-981-15-4890-1_22
33. Smirnov, O.E., Kosyan, A.M., Pryimak, Yu., Kosyk, O.I. & Taran, N.Yu. (2021). Organo-specific accumulation of phenolic compounds in a buckwheat seedlings under aluminium-acid stress. Ukr. Biochem. J., 93, Is. 1, pp. 75-81. https://doi.org/10.15407/ubj93.01.075