Cytokinins are one of the most important components of the phytohormonal complex. They are involved in the regulation of all vital functions of the organism, including cell division, formation of meristems, responses to the negative effects of the environment, photosynthesis and aging, absorption of macro- and microelements etc. The vast majority of the data were obtained as a result of studies using dicotyledonous plants, which differ in morphology and physiological characteristics from monocotyledonous plants. This makes the comparative analysis of regulatory systems in plants of these two classes relevant. The modern literature data concerning the characteristics of the cytokinin metabolism in cereals were analyzed, the specificity of the cytokinins role in controlling the processes of formation, dormancy and seed germination, the development of inflorescences and roots, organism aging, the formation of adaptive responses to abiotic and biotic stresses were considered, and the anti-stress effect of the hormones were described. Relationship between the productivity of cereal plants and the level of various forms of endogenous cytokinins or exogenous treatment with them was emphasized. The effect of gene modifications on the productivity of rice, wheat, barley, and maize is disscused as well as on their tolerance to different environment factors. Particular attention is paid to the involvement of highly specific protein promoters in the regulation of biosynthesis, metabolism, and cytokinin signaling genes. The information presented on cereals is compared with data obtained on dicotyledonous plants. The conclusion is drawn on the need to alter researches from model objects that are not of practical interest to an in-depth study of plants having good prospects for use.
Keywords: cytokinins, cereals, growth, development, adaptation, productivity
Full text and supplemented materials
Free full text: PDFReferences
1. Liu, J., Moore, S., Chen, C. & Lindsey, K. (2017). Crosstalk complexities between auxin, cytokinin and ethylene in Arabidopsis root development: from experiments to systems modeling and back again. Molecular Plant, 10 (12), pp. 1480-1496. https://doi.org/10.1016/j.molp.2017.11.002
2. Munne-Bosch, S. & Muller, M. (2013). Hormonal cross-talk in plant development and stress responses. Front. Plant Sci., 4, pp. 529-531. https://doi.org/10.3389/fpls.2013.00529
3. Schaller, G.E., Street, I.H. & Kieber, J.J. (2014). Cytokinin and the cell cycle. Curr. Opin. Plant Biol., 21, pp. 7-15. https://doi.org/10.1016/j.pbi.2014.05.015
4. Kurepa, J., Shull, T.E. & Smalle, J.A. (2019). Antagonistic activity of auxin and cytokinin in shoot and root organs. Plant Direct, 3, pp. 1-9. https://doi.org/10.1002/pld3.121
5. Bielach, A., Hrtyan, M. & Tognetti, V.B. (2017). Plants under stress: Involvement of auxin and cytokinin. Int. J. Mol. Sci., 18 (7), p. 1427. https://doi.org/10.3390/ijms18071427
6. Cortleven, A., Leuendorf, J. E., Frank, M., Pezzetta, D., Bolt, S. & Schmulling, T. (2018). Cytokinin action in response to abiotic and biotic stress in plants. Plant, Cell & Environment, 42 (3), pp. 998-1018. https: //doi.org/10.1111/pce.13494 https://doi.org/10.1111/pce.13494
7. Honig, M., Plihalova, L., Husickova, A., Nisler, J. & Dolezal, K. (2018). Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int. J. Mol. Sci., 19, p. 4045. https://doi.org/10.3390/ijms19124045
8. Pavlu, J., Novak, J., Koukalova, V., Luklova, M., Brzobohaty, B. & Cerny, M. (2018). Cytokinin at the crossroads of abiotic stress signalling pathways. Int. J. Mol. Sci., 19, p. 2450. https://doi.org/10.3390/ijms19082450
9. Zurcher, E. & Muller, B. (2016). Cytokinin synthesis, signaling and function - advances and new insights. Int. Rev. Cell Mol. Biol., 324, pp. 1-38. https://doi.org/10.1016/bs.ircmb.2016.01.001
10. Kieber, J.J. & Schaller, G.E. (2018). Cytokinin signaling in plant development. Development, 145, dev149344. https://doi.org/10.1242/dev.149344
11. Romanov, G.A., Lomin, S.N. & Schmulling, T. (2018). Cytoknin signaling: from the ER or from the PM? That is the question! New Phytologist, 218 (1), p. 41. https://doi.org/10.1111/nph.14991
12. Locascio, A., Roig-Villanova, I., Bernardi, J. & Varotto, S. (2014). Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin. Front. Plant Sci., 5, p. 412. https://doi.org/10.3389/fpls.2014.00412
13. Jiskrova, E., Novak, O., Pospisilova, H., Holubova, K., Karady, M., Galuszka, P., Robert, S. & Frebort, I. (2016). Extra- and intracellular distribution of cytokinins in the leaves of monocots and dicots. New Biotechnology, 33(5), pp. 735-742. https://doi.org/10.1016/j.nbt.2015.12.010
14. Shoaib, M., Yang, W., Shan, Q., Sajjad, M. & Zhang, A. (2019). Genome-wide identification and expression analysis of new cytokinin metabolic genes in bread wheat (Triticum aestivum L.). Peer J., 7: e6300. https://doi.org/10.7717/peerj.6300
15. Romanov, G.A. (2009). How do cytokinins affect the cell? Russian J. Plant Physiol., 56, pp. 268-290. https://doi.org/10.1134/S1021443709020174
16. Frebort, I., Kowalska, M., Hluska, T., Frebortova, J. & Galuszka, P. (2011). Evolution of cytokinin biosynthesis and degradation. J. Exp. Bot., 62, No. 8, pp. 2431-2452. https://doi.org/10.1093/jxb/err004
17. Sakakibara, H. (2006). Cytokinins: Activity, biosynthesis and translocation. Ann. Rev. Plant Biol., 57, pp. 431-449. https://doi.org/10.1146/annurev.arplant.57.032905.105231
18. Gajdosova, S., Spichal, L., Kaminek, M., Hoyerova, K., Novak, O., Dobrev, P.I., Galuszka, P., Klima, P., Gaudinova, A., Zizkova, E., Hanus, J., Dancak, M., Travnicek, B., Pesek, B., Krupicka, M., Vankova, R., Strnad, M. & Motyka, V. (2011). Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot., 62 (8), pp. 2827-2840. https://doi.org/10.1093/jxb/erq457
19. Veach, Y.K., Martin, R.C., Mok, D.W.S., Malbeck, J., Vankova, R. & Mok, M.C. (2003). O-Glucosylation of cis-zeatin in maize: characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol., 131, pp. 1374-1380. https://doi.org/10.1104/pp.017210
20. Kudo, T., Makita, N., Kojima, M., Tokunaga, H. & Sakakibara, H. (2012). Cytokinin activity of cis-zeatin and phenotypic alterations induced by overexpression of putative cis-zeatin-O-glucosyltransferase in rice. Plant Physiol., 160, pp. 319-331. https://doi.org/10.1104/pp.112.196733
21. Li, X., Mo, X., Shou, H. & Wu, P. (2006). Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiol., 47, pp. 1112-1123. https://doi.org/10.1093/pcp/pcj082
22. Lomin, S.N., Yonekura-Sakakibara, K., Romanov, G.A. & Sakakibara, H. (2011). Ligand-binding properties and subcellular localization of maize cytokinin receptors. J. Exp. Bot., 62, pp. 5149-5159. https://doi.org/10.1093/jxb/err220
23. Choi, J., Lee, J., Kim, K., Cho, M., Ryu, H., An, G. & Hwang, I. (2012). Functional identification of OsHk6 as a homotypic cytokinin receptor in rice with preferential affinity for iP. Plant Cell Physiol., 53, pp. 1334-1343. https://doi.org/10.1093/pcp/pcs079
24. Vankova, R., Kosova, K., Dobrev, P., Vitamvas, P., Travnickova, A., Cvikrova, M., Pesek, B., Gaudinova, A., Prerostova, S., Musilova, J., Galiba, G. & Prasil, I.T. (2014). Dynamics of cold acclimation and complex phytohormone responses in Triticum monococcum lines G3116 and DV92 differing in vernalization and frost tolerance level. Environ. Exp. Bot., 101, pp. 12-25. https://doi.org/10.1016/j.envexpbot.2014.01.002
25. Hluska, T., Dobrev, P.I., Tarkowska, D., Frebortova, J., Zalabak, D., Kopecny, D., Plihal, O., Kokas, F., Briozzo, P., Zatloukal, M., Motyka, V. & Galuszka, P. (2016). Cytokinin metabolism in maize: Novel evidence of cytokinin abundance, interconversions and formation of a new trans-zeatin metabolic product with a weak anticytokinin activity. Plant Science, 247, pp. 127-137. https://doi.org/10.1016/j.plantsci.2016.03.014
26. Song, J., Jiang, L. & Jameson, P.E. (2012). Coordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat. BMC Plant Biol., 12: 78. https://doi.org/10.1186/1471-2229-12-78
27. Vyroubalova, S., Vaclavikova, K., Tureckova, V., Novak, O., Smehilova, M., Hluska, T., Ohnoutkova, L., Frebort, I. & Galuszka, P. (2009). Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. Plant Physiol., 151, pp. 433-447. https://doi.org/10.1104/pp.109.142489
28. Quesnelle, P.E. & Emery, R.J.N. (2007). cis-Cytokinins that predominate in Pisum sativum during early embryogenesis will accelerate embryo growth in vitro. Can. J. Bot., 85, pp. 91-103. https://doi.org/10.1139/b06-149
29. Li, P., Lei, K., Li, Y., He, X., Wang, S., Liu, R., Ji, L. & Hou, B. (2019). Identification and characterization of the first cytokinin glycosyltransferase from rice. Rice, 12, p. 19. https://doi.org/10.1186/s12284-019-0279-9
30. Banowetz, G.M., Ammar, K. & Chen, D.D. (1999). Temperature effects on cytokinin accumulation and kernel mass in a dwarf wheat. Ann Bot., 83, pp. 303-307. https://doi.org/10.1006/anbo.1998.0823
31. Rijavec, T. & Dermastia, M. (2010). Cytokinins and their function in developing seeds. Acta Chim. Slov., 3, pp. 617-629.
32. Yang, J.C., Zhang, J.H., Huang, L., Wang, Z.Q., Zhu, Q.S. & Liu, L.J. (2002). Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Ann Bot., 90, pp. 369-377. https://doi.org/10.1093/aob/mcf198
33. Powell, A.F., Paleczny, A.R., Olechowski, H. & Emery, R.J.N. (2013). Changes in cytokinin form and concentration in developing kernels correspond with variation in yield among field-grown barley cultivars. Plant Physiol. Biochem., 64, pp. 33-40. https://doi.org/10.1016/j.plaphy.2012.12.010
34. Yang, J.C., Peng, S.B., Visperas, R.M., Sanico, A.L., Zhu, Q.S. & Gu, S.L. (2000). Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regul., 30, pp. 261-270. https://doi.org/10.1023/A:1006356125418
35. Yang, J., Zhang, J., Wang, Z., Zhu, Q. & Wang, W. (2001). Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol., 127 (1), pp. 315-323. https://doi.org/10.1104/pp.127.1.315
36. Yang, J.C., Zhang, J.H., Wang, Z.Q. & Zhu, Q.S. (2003). Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice. Plant Growth Regul., 41, pp. 185-119. https://doi.org/10.1023/B:GROW.0000007503.95391.38
37. Yang, D., Li, Y., Shi, Y., Cui, Z., Luo, Y., Zheng, M., Chen, J., Li, Ya., Yin, Y. & Wang, Z. (2016). Exogenous cytokinins increase grain yield of winter cultivars by improving stay-green characteristics under heat stress. PLoS One, 11 (5), e0155437. https://doi.org/10.1371/journal.pone.0155437
38. Gupta, N.K., Gupta, S., Shukla, D.S. & Deshmukh, P.S. (2003). Differential responses of BA injection on yield and specific grain growth in contrasting genotypes of wheat (Triticum aestivum L.). Plant Growth Regul., 40, pp. 201-205. https://doi.org/10.1023/A:1025023822806
39. Dietrich, J.T., Kaminek, M., Blevins, D.G., Reinbott, T.M. & Morris, R.O. (1995). Changes in cytokinins and cytokinin oxidase activity in developing maize kernels and the effects of exogenous cytokinin on kernel development. Plant Physiol. Biochem., 33, pp. 327-336.
40. Ray, S. & Chaudhary, M.A. (1981). Effect of plant growth regulators on grain filling and yield of rice. Annu Bot., 47, pp. 755-758. https://doi.org/10.1093/oxfordjournals.aob.a086074
41. Hosseini, S.M., Poustini, K. & Ahmadi, A. (2008). Effects of foliar application of BAP on source and sink strength in four six-rowed barley (Hordeum vulgare L.) cultivars. Plant Growth Regul., 54, pp. 231-239. https://doi.org/10.1007/s10725-007-9245-4
42. Jameson, P.E. & Song, J. (2016). Cytokinin: a key driver of seed yield. J. Exp. Bot., 67 (3), pp. 593-606. https://doi.org/10.1093/jxb/erv461
43. Yaronskaya, E., Vershilovskaya, I., Poers, Y., Alawady, A.E., Averina, N. & Grimm, B. (2006). Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta, 224, pp. 700-709. https://doi.org/10.1007/s00425-006-0249-5
44. Zavaleta-Mancera, H.A., Lopez-Delagdo, H., Loza-Tavera, H., Mora-Herrera, M., Trevilla-Garcia, C., Vargas-Suarez, M. & Ougham, H. (2007). Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. J. Plant Physiol., 164, pp. 1572-1582. https://doi.org/10.1016/j.jplph.2007.02.003
45. He, P. & Jin, J.Y. (1999). Relationships among hormone changes, transmembrane flux of Ca2+ and lipid peroxidation during leaf senescing in spring maize. Acta Botanica Sinica, 41, pp. 1221-1226.
46. Luo, Y., Tang, Y., Zhang, X., Li, W., Chang, Y., Pang, D., Xu, X., Li, Y. & Wang, Z. (2018). Interactions between cytokinin and nitrogen contribute to grain mass in wheat cultivars by regulating the flag leaf senescence process. Crop J., 6 (5), pp. 538-551. https://doi.org/10.1016/j.cj.2018.05.008
47. Chen, J.B., Liang, Y., Hu, X.Y., Wang, X.X., Tan, F.Q., Zhang, H.Q., Ren, Z.L. & Luo, P.G. (2010). Physiological characterization of 'stay-green' wheat cultivars during the grain filling stage under field growing conditions. Acta Physiol. Plant., 32, pp. 875-882. https://doi.org/10.1007/s11738-010-0475-0
48. Ramireddy, E., Hosseini, S.A., Eggert, K., Gillandt, S., Gnad, H., Von Wiren, N. & Schmulling, T. (2018). Root engineering in barley: increasing cytokinin degradation produces a larger root system, mineral enrichment in the shoot and improved drought tolerance. Plant Physiol., 177 (3), pp. 1078-1095. https://doi.org/10.1104/pp.18.00199
49. Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E. R., Qian, Q., Kitano, H. & Matsuoka, M. (2005). Cytokinin oxidase regulates rice grain production. Science, 309, pp. 741-745. https://doi.org/10.1126/science.1113373
50. Mao, H., Sun, S., Yao, J., Wang, C.R., Yu, S.B., Xu, C.G., Li, X.H. & Zhang, Q.F. (2010). Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. PNAS, 107, pp. 19579-19584. https://doi.org/10.1073/pnas.1014419107
51. Fu, J., Thiemann, A., Schrag, T.A., Melchinger, A.E., Scholten, S. & Frisch, M. (2010). Dissecting grain yield pathways and their interactions with grain dry matter content by a two-step correlation approach with maize seedling transcriptome. BMC Plant Biol., 10, pp. 63. https://doi.org/10.1186/1471-2229-10-63
52. Savadi, S. (2017). Molecular regulation of seed development and strategies for engineering seed size in crop plants. Plant Growth Regul., 84 (3), pp. 401-422. https://doi.org/10.1007/s10725-017-0355-3
53. Li, Y., Song, G., Gao, J., Zhang, S., Zhang, R., Li, W., Chen, M., Liu, M., Xia, X., Risacher, T. & Li, G. (2018). Enhancement of grain number per spike by RNA interference of cytokinin oxidase 2 gene in bread wheat. Hereditas, 155, pp. 33. https://doi.org/10.1186/s41065-018-0071-7
54. Panda, B.B., Sekhar, S., Dash, S.K., Behera, L. & Shaw, B.P. (2018). Biochemical and molecular characterisation of exogenous cytokinin application on grain filling in rice. BMC Plant Biol., 18 (1), p. 89. https://doi.org/10.1186/s12870-018-1279-4
55. Geng, J., Li, L.Q., Lv, Q., Zhao, Y., Liu, Y., Zhang, L. & Li, X. (2017). TaGW2-6A allelic variation contributes to grain size possibly by regulating the expression of cytokinins and starch-related genes in wheat. Planta, 246, pp.1153-1163. https://doi.org/10.1007/s00425-017-2759-8
56. Sestili, F., Pagliarello, R., Zega, A., Saletti, R., Pucci, A., Botticella, E., Masci, S., Tundo, S., Moscetti, I., Foti, S. & Lafiandra, D. (2019). Enhancing grain size in durum wheat using RNAi to knockdown GW2 genes. Theoretical and Applied Genetics, 132 (2), pp. 419-429. https://doi.org/10.1007/s00122-018-3229-9
57. Chen, J., Lausser, A. & Dresselhaus, T. (2014). Hormonal responses during early embryogenesis in maize. Biochemical Society Transactions, 42(2), pp. 325-331. https://doi.org/10.1042/BST20130260
58. Zalabak, D., Pospisilova, H., Smehilova, M., Mrizova, K., Frebort, I. & Galuszka, P. (2013). Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol. Adv., 31, pp. 97-117. https://doi.org/10.1016/j.biotechadv.2011.12.003
59. Gregersen, P.L., Culetic, A., Boschian, L. & Krupinska, K. (2013). Plant senescence and crop productivity. Plant Mol. Biol., 82, pp. 603-622. https://doi.org/10.1007/s11103-013-0013-8
60. Sykorova, B., Kuresova, G., Daskalova, S., Trckova, M., Hoyerova, K., Raimanova, I., Motyka, V., Travnickova, A., Elliott, M.C. & Kaminek, M. (2008). Senescence-induced ectopic expression of the A. tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx, and nitrate reductase activity, but does not affect grain yield. J. Exp. Bot., 59, pp. 377-387. https://doi.org/10.1093/jxb/erm319
61. Liu, L., Zhou, Y., Szczerba, M.W., Li, X. & Lin, Y. (2010). Identification and application of a rice senescence-associated promoter. Plant Physiol., 153, pp. 1239-1249. https://doi.org/10.1104/pp.110.157123
62. Zalewski, W., Galuszka, P., Gasparis, S., Orczyk, W. & Nadolska-Orczyk, A. (2010). Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. J. Exp. Bot., 61, pp. 1839-1851. https://doi.org/10.1093/jxb/erq052
63. Gao, F. & Ayele, B.T. (2014). Functional genomics of seed dormancy in wheat: advances and prospects. Front. Plant Sci., 5, p. 458. https://doi.org/10.3389/fpls.2014.00458
64. Nonogaki, H. (2019). Seed germination and dormancy - the classic story, new puzzles, and evolution. J. Integr. Plant Biol., 61(5), pp. 541-563. https://doi.org/10.1111/jipb.12762
65. Huang, X., Hou, L., Meng, J., You, H., Li, Z., Gong, Z., Yang, S. & Shi, Y. (2018). The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Molecular Plant, 11 (7), pp. 970-982. https://doi.org/10.1016/j.molp.2018.05.001
66. Wang, Y., Li, L., Ye, T., Zhao, S., Liu, Z., Feng, Y.-Q. & Wu, Y. (2011). Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. Plant J., 68, pp. 249-261. https://doi.org/10.1111/j.1365-313X.2011.04683.x
67. Tuan, P.A., Yamasaki, Y., Kanno, Y., Seo, M. & Ayele, B.T. (2019). Transcriptomics of cytokinin and auxin metabolism and signaling genes during seed maturation in dormant and non-dormant wheat genotypes. Sci. Reports, 9(1), pp. 3983. https://doi.org/10.1038/s41598-019-40657-9
68. Stirk, W.A., Vaclavikova, K., Novak, O. & Gajdosova, S. (2012). Involvement of cis-zeatin, dihydrozeatin, and aromatic cytokinins in germination and seedling establishment of maize, oats, and lucerne. J. Plant Growth Regul., 31, pp. 392-405. https://doi.org/10.1007/s00344-011-9249-1
69. Liu, Y., Xu, H., Wen, X. & Liao, Y. (2016). Effect of polyamine on seed germination of wheat under drought stress is related to changes in hormones and carbohydrates. J. Integr. Agriculture, 15 (12), pp. 2759-2774. https://doi.org/10.1016/S2095-3119(16)61366-7
70. Azizi, P., Rafii, M.Y., Maziah, M., Abdullah, S.N., Hanafi, M.M., Latif, M.A., Rashid, A.A. & Sahebi, M. (2015). Understanding the shoot apical meristem regulation: a study of the phytohormones, auxin and cytokinin, in rice. Mechanisms of development, 135, pp. 1-15. https://doi.org/10.1016/j.mod.2014.11.001
71. Gu, B., Zhou, T., Luo, J., Liu, H., Wang, Y., Shangguan, Y., Zhu, J., Li, Y., Sang, T., Wang, Z. & Han, B. (2015). An-2 encodes a cytokinin synthesis enzyme that regulates awn length and grain production in rice. Mol. Plant., 8(11), pp. 1635-1650. https://doi.org/10.1016/j.molp.2015.08.001
72. Yeh, S.Y., Chen, H.W., Ng, C.Y., Lin, C.Y., Tseng, T.H., Li, W.H. & Ku, M.S.B. (2015). Down-regulation of cytokinin oxidase 2 expression increases tiller number and improves rice yield. Rice, 8(1):36. https://doi.org/10.1186/s12284-015-0070-5
73. Joshi, R., Sahoo, K.K., Tripathi, A.K., Kumar, R., Gupta, B.K., Pareek, A. & Singla-Pareek, S.L. (2018). Knockdown of an inflorescence meristem-specific citokinin oxidase - OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant Cell Environ., 41 (5), pp. 936-946. https://doi.org/10.1111/pce.12947
74. Sun, L., Zhang, Q., Wu, J., Zhang, L., Jiao, X., Zhang, S., Sun, Z.Z.D., Lu, T. & Sun, Y. (2014). Two rice authentic histidine phosphotransfer proteins, OsAHP1 and OsAHP2, mediate cytokinin signaling and stress responses in rice. Plant Physiol., 165, pp. 335-345. https://doi.org/10.1104/pp.113.232629
75. Yamburenko, M.V., Kieber, J.J. & Schaller, G. E. (2017). Dynamic patterns of expression for genes regulating cytokinin metabolism and signaling during rice inflorescence development. PloS One, 12(4), e0176060. https://doi.org/10.1371/journal.pone.0176060
76. Radchuk, V., Radchuk, R., Pirko, Y., Vankova, R., Gaudinova, A., Korkhovoy, V., Yemets, A., Weber, H., Weschke, W., Blume, Y.B. (2012). A somaclonal line SE7 of finger millet (Eleusine coracana) exhibits modified cytokinin homeostasis and increased grain yield. J. Exp. Bot., 63 (15), pp. 5497-5506. https://doi.org/10.1093/jxb/ers200
77. Mrizova, K., Jiskrova, E., Vyroubalova, S., Novak, O., Ohnoutkova, L., Pospisilova, H., Frebort, I., Harwood, W.A. & Galuszka, P. (2013). Overexpression of cytokinin genes in barley (Hordeum vulgare cv. Golden Promise) fundamentally affects morphology and fertility. PLoS One, 8(11): e79029. https://doi.org/10.1371/journal.pone.0079029
78. Li, S., Zhao, B., Yuan, D., Duan, M., Qian, Q., Tang, L., Wang, B., Liu, X., Zhang, J., Wang, J., Sun, J., Liu, Z., Feng, Y.-Q., Yuan, L. & Li, C. (2013). Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc. Natl. Acad. Sci. USA, 110, pp. 3167-3172. https://doi.org/10.1073/pnas.1300359110
79. Huang, Y., Bai, X., Luo, M. & Xing, Y. (2018). Short Panicle 3 controls panicle architecture by upregulating APO2/RFL and increasing cytokinin content in rice. J. Integr. Plant Biol., Oct. 10. https://doi.org/10.1111/jipb.12729
80. Du, Y., Liu, L., Li, M., Fang, S., Shen, X., Chu, J. & Zhang, Z. (2017). UNBRANCHED3 regulates branching by modulating cytokinin biosynthesis and signaling in maize and rice. New Phytol., 214 (2), pp. 721-733. https://doi.org/10.1111/nph.14391
81. Han, Y., Yang, H. & Jiao, Y. (2014). Regulation of inflorescence architecture by cytokinins. Front. Plant Sci., 5, pp. 669. https://doi.org/10.3389/fpls.2014.00669
82. Hochholdinger, F. (2016). Untapping root system architecture for crop improvement. J. Exp. Bot., 67, pp. 4431-4433. https://doi.org/10.1093/jxb/erw262
83. Jing, H. & Strader, L.C. (2019). Interplay of auxin and cytokinin in lateral root development. Int. J. Mol. Sci., 20, pp. 486. https://doi.org/10.3390/ijms20030486
84. Rani Debi, B., Taketa, S. & Ichii, M. (2005). Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa L.). J. Plant Physiol., 162, pp. 507-515. https://doi.org/10.1016/j.jplph.2004.08.007
85. Kirschner, G.K., Stahl, Y., Imani, J., von Korff, M. & Simon, R. (2018). Fluorescent reporter lines for auxin and cytokinin signalling in barley (Hordeum vulgare). PLoS One, 13(4): e0196086. https://doi.org/10.1371/journal.pone.0196086
86. Holubova, K., Hensel, G., Vojta, P., Bergougnoux, V. & Galuszka, P. (2018). Modification of barley plant productivity through regulation of cytokinin content by reverse-genetics approaches. Front. Plant Sci., 9, pp. 1676. https://doi.org/10.3389/fpls.2018.01676
87. Ramireddy, E., Galuszka, P. & Schmulling, T. (2018). Zn-fortified cereal grains in field-grown barley by enhanced root cytokinin breakdown. Plant Signaling Behavior, 13 (11): e1530023. https://doi.org/10.1080/15592324.2018.1530023
88. Gan, S. & Amasino, R.M. (1997). Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiol., 113 (2), pp. 313-319. https://doi.org/10.1104/pp.113.2.313
89. Thomas, H. & Ougham, H. (2014). The stay-green trait. J. Exp. Bot., 65 (14), pp. 3889-3900. https://doi.org/10.1093/jxb/eru037
90. Wang, W.Q., Hao, Q.Q., Tian, F.X., Li, Q.X. & Wang, W. (2016). The staygreen phenotype of wheat mutant tasg 1 is associated with altered cytokinin metabolism. Plant Cell Rep., 35, pp. 585-599. https://doi.org/10.1007/s00299-015-1905-7
91. Holub, J., Hanus, J., Hanke, D.E. & Strnad, M. (1998). Biological activity of cytokinins derived from Ortho- and Meta-hydroxybenzyladenine. Plant Growth Regul., 26, pp. 109-115. https://doi.org/10.1023/A:1006192619432
92. Lee, Z.H., Hirakawa, T., Yamaguchi, N. & Ito, T. (2019). The roles of plant hormones ans their interaction with regulatory genes in determining meristem activity. Int. J. Mol. Sci., 20 (16), p. 4065. https://doi.org/10.3390/ijms20164065
93. Robson, P.R.H., Donnison, I.S. & Wang, K. (2004). Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter. Plant Biotechnol. J., 2, pp. 101-112. https://doi.org/10.1046/j.1467-7652.2004.00054.x
94. Vlckova, A., Spundova, M., Kotabova, E., Novotny, R., Dolezal, K. & Naus, J. (2006). Protective cytokinin action switches to damaging during senescence of detached wheat leaves in continuous light. Physiol. Plant., 126, pp. 257-267. https://doi.org/10.1111/j.1399-3054.2006.00593.x
95. Hao, Q., Wang, W., Li, Q., Chen, F., Ni, F., Wang, Y., Fu, D., Wu, J. & Wang, W. (2019). The involvement of cytokinin and nitrogen metabolism in delayed flag leaf senescence in a wheat stay-green mutany, tasg 1. Plant Sci., 278, pp. 70-79. https://doi.org/10.1016/j.plantsci.2018.10.024
96. Talla, S.K., Panigrahy, M., Kappara, S., Nirosha, P., Neelamraju, S. & Ramanan, R. (2016). Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. J. Exp. Bot., 67, pp. 1839-1851. https://doi.org/10.1093/jxb/erv575
97. Janeckova, H., Husickova, A., Lazar, D., Ferretti, U., Pospisil, P. & Spundova, M. (2019). Exogenous application of cytokinin during dark senescence eliminates the acceleration of photosystem II impairment caused by chlorophyll b deficiency in barley. Plant Physiol. Biochem., 136, pp. 43-51. https://doi.org/10.1016/j.plaphy.2019.01.005
98. Liu, X., Huang, B. & Banowetz, G. (2002). Cytokinin effects on creeping bentgrass responses to heat stress: I. Shoot and root growth. Crop Sci., 42, pp. 457-465. https://doi.org/10.2135/cropsci2002.4570
99. He, P., Osaki, M., Takebe, M., Shinano, T. & Wasaki, J. (2005). Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J. Exp. Bot., 56, pp. 1117-1128. https://doi.org/10.1093/jxb/eri103
100. Ren, B., Zhang, J., Dong, S., Liu, P. & Zhao, B. (2018). Exogenous 6-benzyladenine improves antioxidative system and carbon metabolism of summer maize waterlogged in the field. J. Agron. Crop Sci., 204, pp. 175-184. https://doi.org/10.1111/jac.12253
101. Yang, D.Q., Luo, Y.L., Dong, W.H., Yin, Y.P., Li, Y. & Wang, Z.L. (2018). Response of photosystem II performace and antioxidant enzyme activities in stay-green wheat to cytokinin. Photosynthetica, 56, pp. 567-577. https://doi.org/10.1007/s11099-017-0708-1
102. Criado, M.V., Caputo, C., Roberts, I.N., Castro, M.A. & Barneix, A.J. (2009). Cytokinin-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum). J. Plant Physiol., 166, pp. 1775-1785. https://doi.org/10.1016/j.jplph.2009.05.007
103. Luo, Y., Tang, Y., Zhang, X., Li, W., Chang, Y., Pang, D., Xu, X., Li, Y. & Wang, Z. (2018). Interactions between cytokinin and nitrogen contribute to grain mass in wheat cultivars by regulating the flag leaf senescence process. Crop J., 6 (5), pp. 538-551. https://doi.org/10.1016/j.cj.2018.05.008
104. Roche, J., Turnbull, M.H., Guo, Q.Q., Novak, O., Spath, J., Gieseg, S.P., Jameson, P.E. & Love, J. (2017). Coordinated nitrogen and carbon remobilization for nitrate assimilation in leaf, sheath and root and associated cytokinin signals during early regrowth of Lolium perenne. Ann. Bot., 119, pp. 1353-1364. https://doi.org/10.1093/aob/mcx014
105. Wang, W., Hao, Q., Tian, F., Li, Q. & Wang, W. (2016). Cytokinin-regulated sucrose metabolism in stay-green wheat phenotype. PLoS One, 11(8): e0161351. https://doi.org/10.1371/journal.pone.0161351
106. Guo, Y. & Gan, S. (2014). Translational researches of leaf senescence for enhancing plant productivity and quality. J. Exp. Bot., 65, pp. 3901-3913. https://doi.org/10.1093/jxb/eru248
107. Gu, J., Li, Z., Mao, Y., Struik, P.C., Zhang, H., Liu, L., Wang, Z. & Yang, J. (2018). Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci., 274, pp. 3200-3331. https://doi.org/10.1016/j.plantsci.2018.06.010
108. Peleg, Z. & Blumwald, E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Curr. Opin. Plant Biol., 14, pp. 290-295. https://doi.org/10.1016/j.pbi.2011.02.001
109. Veselov, D.S., Kudoyarova, G.R., Kudryakova, N.V. & Kusnetsov, V.V. (2017). Role of cytokinins in stress resistance of plants. Russ. J. Plant Physiol., 64, pp. 15-27. https://doi.org/10.1134/S1021443717010162
110. Prerostova, S., Dobrev, P.I., Gaudinova, A., Knirsch, V., Korber, N., Pieruschka, R., Fiorani, F., Brzobohaty, B., Cerny, M., Spichal, L., Humplik, J., Vanek, T., Schurr, U. & Vankova, R. (2018). Cytokinins: their impact on molecular and growth responses to drought stress and recovery in Arabidopsis. Front. Plant Sci., 9, p. 655. https://doi.org/10.3389/fpls.2018.00655
111. Kulkarni, M., Soolanayakanahally, R., Ogawa, S., Uga, Y., Selvaraj, M.G. & Kagale, S. (2017). Drought response in wheat: key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency. Front. Chem., 5, p. 106. https://doi.org/10.3389/fchem.2017.00106
112. Lamaoui, M., Jemo, M., Datla, R. & Bekkaoui, F. (2018). Heat drought stresses in crops and approaches for their mitigation. Front. Chem., 19, p. 26. https://doi.org/10.3389/fchem.2018.00026
113. Todaka, D., Zhao, Y., Yoshida, T., Kudo, M., Kidokoro, S., Mizoi, J., Kodaira, K.-S., Takebayashi, Y., Kojima, M., Sakakibara, H., Toyooka, K., Sato, M., Fernie, A.R., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2017). Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J., 90, pp. 61-78. https://doi.org/10.1111/tpj.13468
114. Wang, C., Yang, A., Yin, H. & Zhang, J. (2008). Influence of water stress on endogenous hormone contents and cell damage of maize seedlings. J. Integr. Plant Biol., 50, pp. 427-434. https://doi.org/10.1111/j.1774-7909.2008.00638.x
115. Bano, A., Dorffling, K., Bettin, D. & Hahn, H. (1993). Abscisic acid and cytokinins as possible root-to-shoot signals in xylem sap of rice plants in drying soils. Funct. Plant Biol., 20, pp. 109-115. https://doi.org/10.1071/PP9930109
116. Abid, M., Shao, Y., Liu, S., Wang, F., Gao, J., Jiang, D., Tian, Z. & Dai, T. (2017). Pre-drought priming sustains grain development under post-anthesis drought stress by regulating the growth hormones in winter wheat (Triticum aestivum L.). Planta, 246 (3), pp. 509-524. https://doi.org/10.1007/s00425-017-2698-4
117. Maruyama, K., Urano, K., Yoshiwara, K., Morishita, Y., Sakurai, N., Suzuki, H., Kojima, M., Sakakibara, H., Shibata, D., Saito, K., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2014). Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol., 164 (4), pp. 1759-1771. https://doi.org/10.1104/pp.113.231720
118. Peleg, Z., Reguera, M., Tumimbang, E., Walia, H. & Blumwald, E. (2011). Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotech. J., 9, pp. 747-758. https://doi.org/10.1111/j.1467-7652.2010.00584.x
119. Merewitz, E., Xu, Y. & Huang, B. (2016). Differentially expressed genes associated with improved drought tolerance in creeping bentgrass overexpressing a gene for cytokinin biosynthesis. PLoS One, 11, pp. 1-18. https://doi.org/10.1371/journal.pone.0166676
120. Decima Oneto, C., Otegui, M.E., Baroli, I., Beznec, A., Faccio, P., Bossio, E., Blumwald, E. & Lewi, D. (2016). Water deficit stress tolerance in maize conferred by expression of an isopentenyltransferase (IPT) gene driven by a stress- and maturation-induced promoter. J. Biotechnol., 220, pp. 66-77. https://doi.org/10.1016/j.jbiotec.2016.01.014
121. Reguera, M., Peleg, Z., Abdel-Tawab, Y.M., Tumimbang, E.B., Delatorre, C.A. & Blumwald, E. (2013). Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiol., 163, pp. 1609-1622. https://doi.org/10.1104/pp.113.227702
122. Xu, Y., Burgess, P., Zhang, X. & Huang, B. (2016). Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS scavenging systems in Agrostis stolonifera. J. Exp. Bot., 67 (6), pp. 1979-1992. https://doi.org/10.1093/jxb/erw019
123. Pospisilova, H., Jiskrova, E., Vojta, P., Mrizova, K., Kokas, F., Cudejkova, M.M., Bergougnoux, V., Plihal, O., Klimesova, J., Novak, O., Dzurova, L., Frebort, I. & Galuszka, P. (2016). Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. New Biotechnol., 33 (5), pp. 692-705. https://doi.org/10.1016/j.nbt.2015.12.005
124. Vojta, P., Kokas, F., Husickova, A., Gruz, J., Bergougnoux, V., Marchetti, C.F., Jiskrova, E., Jezilova, E., Mik, V., Ikeda, Y. & Galuszka, P. (2016). Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress. New Biotechnol., 33 (5), pp. 676-691. https://doi.org/10.1016/j.nbt.2016.01.010
125. Li, W., Herrera-Estrella, L. & Tran, L.P. (2016). The yin-yang of cytokinin homeostasis and drought acclimation/adaptation. Trends Plant Sci., 21 (7), pp. 548-550 https://doi.org/10.1016/j.tplants.2016.05.006
126. Cheikh, N. & Jones, R.J. (1994). Disruption of maize kernel growth and development by heat stress (role of cytokinin/abscisic acid balance). Plant Physiol., 106(1), pp. 45-51. https:/ doi.org/10.1104/pp.106.1.45 https://doi.org/10.1104/pp.106.1.45
127. Wu, C., Cui, K., Wang, W., Li, Q., Fahad, S., Hu, Q., Huang, J., Nie, L., Mohapatra, P.K. & Peng, S. (2017). Heat-induced cytokinin transportation and degradation are associated with reduced panicle cytokinin expression and fewer spikelets per panicle in rice. Front. Plant Sci., 8, p. 371. https://doi.org/10.3389/fpls.2017.00371
128. Wu, C., Cui, K., Wang, W., Li, Q., Fahad, S., Hu, Q., Huang, J., Nie, L. & Peng, S. (2016). Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Sci. Rep., 6, p. 34978. https://doi.org/10.1038/srep34978
129. Veerasamy, M., He, Y. &Yuang, B. (2007). Leaf senescence and protein metabolism in creeping bentgrass exposed to heat stress and treated with cytokinins. J. Amer. Soc. Horticult. Sci., 132, pp. 467-472. https://doi.org/10.21273/JASHS.132.4.467
130. Xu, Y., Gianfagna, T. & Huang, B. (2010). Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species. J. Exp. Bot., 61 (12), pp. 3273-3289. https://doi.org/10.1093/jxb/erq149
131. Kosova, K., Prasil, I.T., Vitamvas, P., Dobrev, P., Motyka, V., Flokova, K., Novak, O., Tureckova, V., Rolcik, J., Pesek, B., Travnickova, A., Gaudinova, A., Galiba, G., Janda, T., Vlasakova, E., Prasilova, P. & Vankova, R. (2012). Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J. Plant Physiol., 169, pp. 567-576. https://doi.org/10.1016/j.jplph.2011.12.013
132. Kalapos, B., Novak, A., Dobrev, P., Nagy, T., Vitamvas, P., Marincs, F., Galiba, G. & Vankova, R. (2017). Effects of the winter wheat Cheyenne 5A substitute chromosome on dynamics of abscisic acid and cytokinins in freezing-sensitive Chinese Spring genetic background. Front. Plant Sci., 8, pp. 2033. https://doi.org/10.3389/fpls.2017.02033
133. Li, R., Sosa, J.L. & Zavala, M.E. (2000). Accumulation of zeatin O-glycosyltransferase in Phaseolus vulgaris and Zea mays following cold stress. Plant Growth Regul., 32, pp. 295-305. https://doi.org/10.1023/A:1010755901072
134. Iqbal, M., Nadeem, M., Jamil, S., Ahmed, M. & Altaf, T. (2018). Exogenous application of plant hormones make wheat (Triticum aestivum) withstand the attack of salinity stress. Int. J. Biosci., 12 (1), pp. 375-385. https://doi.org/10.12692/ijb/12.1.375-385
135. Iqbal, M., Basra, S. & Jamil, A. (2006). Seed enhancement with cytokinins: Changes in growth and grain yield in salt stressed wheat plants. Plant Growth Regul., 50, pp. 29-39. https://doi.org/10.1007/s10725-006-9123-5
136. Ma, X., Zhang, J. & Huang, B. (2016). Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance. Environ. Exp. Bot., 125, pp. 1-11. https://doi.org/10.1016/j.envexpbot.2016.01.002
137. Gadallah, M. (1999). Effects of kinetin on growth, grain yield and some mineral elements in wheat plants growing under excess salinity and oxygen deficiency. Plant Growth Regul., 27, pp. 63-74. https://doi.org/10.1023/A:1006181204765
138. Fricke, W., Akhiyarova, G., Veselov, D. & Kudoyarova, G. (2004). Rapid and tissue-specific changes in ABA and in growth rate response to salinity in barley leaves. J. Exp. Bot., 55, pp. 1115-1123. https://doi.org/10.1093/jxb/erh117
139. Formentin, E., Barizza, E., Stevanato, P., Falda, M., Massa, F., Tarkowska, D., Novak, O. & Lo Schiavo, F. (2018). Fast regulation of hormone metabolism contributes to salt tolerance in rice (Oryza sativa spp. Japonica, L.) by inducing specific morpho-physiological responses. Plants (Basel), 7(3), p. 75. https://doi.org/10.3390/plants7030075
140. Stetsenko, L.A., Vedenicheva, N.P., Likhnevsky, R.V. & Kuznetsov, V.V. (2015). Influence of abscisic acid and fluridone on the content of phytohormones and polyamines and the level of oxidative stress in plants of Mesembryanthemum crystallinum L. under salinity. Biology Bulletin, 42 (2), pp. 98-107. https://doi.org/10.1134/S1062359015020107
141. Avalbaev, A., Yuldashev, R., Fedorova, K., Somov, K., Vysotskaya, L., Allagulova, C. & Shakirova, F. (2016). Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity. J. Plant Physiol., 191, pp. 101-110. https://doi.org/10.1016/j.jplph.2015.11.013
142. Werner, T., Nehnevajova, E., Köllmer, I., Novak, O., Strnad, M., Krämer, U. & Schmülling, T. (2010). Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell, 22, pp. 3905-3920. https://doi.org/10.1105/tpc.109.072694
143. Shen, C., Yue, R., Yang, Y., Zhang, L., Sun, T., Tie, S. & Wang, H. (2014). OsARF16 is involved in cytokinin-mediated inhibition of phosphate transport and phosphate signaling in rice (Oryza sativa L.). PLoS One, 9: e112906. https://doi.org/10.1371/journal.pone.0112906
144. Hosseini, S.A., Maillard, A., Hajirezaei, M.R., Ali, N., Schwarzenberg, A., Jamois, F. & Yvin, J.C. (2017). Induction of barley silicon transporter HvLsi1 and HvLsi2, increased silicon concentration in the shoot and regulated starch and ABA homeostasis under osmotic stress and concomitant potassium deficiency. Front. Plant Sci., 8, p. 1359. https://doi.org/10.3389/fpls.2017.01359
145. Guo, Q., Turnbull, M.H., Song, J., Roche, J., Novak, O., Spath, J., Jameson, P.E. & Love, J. (2017). Depletion of carbohydrate reserves limits nitrate uptake during early regrowth in Lolium perenne L. J. Exp. Bot., 68, pp. 1569-1583. https://doi.org/10.1093/jxb/erx056
146. Morrison, E.N., Emery, R.J. & Saville, B.J. (2015). Phytohormone involvement in the Ustilago maydis-Zea mays pathosystem: relationships between abscisic acid and cytokinin levels and strain virulence in infected cob tissue. PLoS One. 10 (6): e0130945. https://doi.org/10.1371/journal.pone.0130945
147. Behr, M., Motyka, V., Weihmann, F., Malbeck, J., Deising, H.B. & Wirsel, S.G.R. (2012). Remodeling of cytokinin metabolism at infection sites of Colletotrichum graminicola on maize leaves. Molecular Plant-Microbe Interactions, 25, pp. 1073-1082. https://doi.org/10.1094/MPMI-01-12-0012-R
148. Angra-Sharma, R. & Sharma, D.K. (1999). Cytokinins in pathogenesis and disease resistance of Pyrenophora teres-barley and Dreschslera maydis-maize interactions during early stages of infection. Mycopathologia, 148, pp. 87-95. https://doi.org/10.1023/A:1007126025955
149. Jiang, C.J., Shimono, M., Sugano, S., Kojima, M., Liu, X., Inoue, H., Sakakibara, H. & Takatsuji, H. (2013). Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Molecular Plant-Microbe Interactions, 26, pp. 287-296. https://doi.org/10.1094/MPMI-06-12-0152-R
150. Spallek, T., Gan, P., Kadota, Y. & Shirasu, K. (2018). Same tune, different song - cytokinins as virulence factor in plant-pathogen interaction. Current Opinion in Plant Biology, 44, pp. 82-87. https://doi.org/10.1016/j.pbi.2018.03.002
151. Hinsch, J., Galuszka, P. & Tudzynski, P. (2016). Functional characterization of the first filamentous fungal tRNA-isopentenyltransferase and its role in the virulence of Claviceps purpurea. New Phytol., 211, pp. 980-992. https://doi.org/10.1111/nph.13960
152. Kind, S., Hinsch, J., Vrabka, J., Hradilova, M., Majeska-Cudejkova, M., Tudzynski, P. & Galuszka, P. (2018). Manipulation of cytokinin level in the ergot fungus Claviceps purpurea emphasizes its contribution to virulence. Curr. Genet., 64 (6), pp. 1303-1319. https://doi.org/10.1007/s00294-018-0847-3
153. Chanclud, E., Kisiala, A., Emery, N.R., Chalvon, V., Ducasse, A., Romiti-Michel, C., Gravot, A., Kroj, T. & Morel, J.B. (2016). Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PLoS Pathog, 12: e1005457. https://doi.org/10.1371/journal.ppat.1005457
154. Sorensen, J.L., Benfield, A.H., Wollenberg, R.D., Westphal, K., Wimmer, R., Nielsen, K.F., Nielsen, M.R., Carere, J., Covarelli, L., Beccari, G., Powell, J., Yamashino, T., Kogler, H., Sondergaard, T.E. & Gardiner, D.M. (2017). The cereal pathogen Fusarium pseudograminearum produces a new class of active cytokinins during infection. Mol. Plant Pathol., 19 (5), pp. 1140-1154. https://doi.org/10.1111/mpp.12593
155. Blum, A., Benfield, A.H., Sorenseb, J.L., Nielsen, M.R., Bachleitner, S., Studt, L., Beccari, G., Covarelli, L., Batley, J. & Gardiner, D.M. (2019). Regulation of a novel Fusarium cytokinin in Fusarium pseudograminearum. Fun. Biol., 123 (3), pp. 255-266. https://doi.org/10.1016/j.funbio.2018.12.009
156. Akagi, A., Fukushima, S., Okada, K., Jiang, C.-J., Yoshida, R., Nakayama, A., Shimono, M., Sugano, S., Yamane, H. & Takatsuji, H. (2014). WRKY45-dependent priming of diterpenoid phytoalexin biosynthesis in rice and the role of cytokinin in triggering the reaction. Plant Mol. Biol., 86 (1-2), pp. 171-183. https://doi.org/10.1007/s11103-014-0221-x
157. Ghosh, A., Shah, M.N.A., Jui, Z.S., Saha, S., Fariha, K.A. & Islam, T. (2018). Evolutionary variation and expression profiling of isopentenyl transferase gene family in Arabidopsis thaliana L. and Oryza sativa L. Plant Gene, 15, pp. 15-27. https://doi.org/10.1016/j.plgene.2018.06.002