Fiziol. rast. genet. 2020, vol. 52, no. 6, 483-493, doi:

Biochemical composition of seeds of transgenic spring rapeseed plants carrying the Mammalia cyp11a1 gene

Shishlova-Sokolovskaya A.M.1, Efimenko S.G.2

  1. State Scientific Institution «Institute of Genetics and Cytology of the National Academy of Sciences of Belarus»
    27 Akademicheskaya St., 220072 Minsk, Republic of Belarus
  2. Federal state budgetary scientific institution «Federal scientific center «V.S. Pustovoit All-Russian Research Institute of Oil Crops»»
    17 Filatova St., 350038 Krasnodar, Russian Federation

The qualitative and quantitative fatty-acid seed composition was identified by the gas chromatography method, and the Kjeldahl method was used to identify the total protein in the fresh mass in Т0—Т3 generations of transgenic spring rapeseed lines of Magnat variety, the Belarusian breeding. Transgenic lines were previously developed by Agrobacterium-mediated transformation using a construct carrying transcriptionally active heterologous genes: mammalian — cyp11a1 of cytochrome P450scc and bacterial — bar. Biometric analysis allowed to establish a stable increase in the mass of 1000 seeds and main raceme indices (length, the number of pods and side shoots) in these lines. Biochemical analysis showed that the insertion of the heterologous cyp11a1 gene does not affect the qualitative seed oil composition of transgenic lines, while significant changes were noted in the quantitative ratio of fatty acids in the seeds of transgenic lines in Т0—Т3 generations as compared to the control plants.

Keywords: Brassica napus L. var. oleifera DC., cyp11a1 gene, cytochrome P450scc, seeds, fatty acids, total protein

Fiziol. rast. genet.
2020, vol. 52, no. 6, 483-493

Full text and supplemented materials

Free full text: PDF  


1. Milashchenko, N.Z. & Abramov, V.F. (1989). Cultivation technology and use of rapeseed and winter cress. Moscow: Agropromizdat [in Russian].

2. Artemov, I.V. & Karpachev, V.V. (2005). Rapeseed - an oil and forage crop. Lipetsk [in Russian].

3. Miller, W.L. & Auchus, R.J. (2011). The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorder. Endocrine Rev., 32, No. 4. p. 579.

4. Payne, A.H. & Hales, D.B. (2004). Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocrine Rev., 25, No. 6 (1), pp. 947-970.

5. Tsuneo Omura & Akio Ito (1991). Biosynthesis and intracellular sorting of mitochondrial forms of cytochrome P450. Methods in Enzymology, 206, pp. 75-81.

6. Ou, W.J., Ito, A., Morohashi, K., Fujii-Kuriyama, Y. & Omura, T. (1986). Processing-independent in vitro translocation of cytochrome P-450(SCC) precursor across mitochondrial membranes. J. Biochem., 100, pp. 1287-1296.

7. Matocha, M.F. & Waterman, M.R. (1984). Discriminatory processing of the precursor forms of cytochrome P-450Scc, and adrenodoxin by adrenocortical and heart mitochondria. J. Biol. Chem., 259 (13), pp. 8672-8678.

8. Zuber, M.X., Mason, J.I., Simpson, E.R. & Waterman, M.R. (1988). Simultaneous transfection of COS-1 cells with mitochondrial and microsomal steroid hydroxylases: incorporation of a steroidogenic pathway into nonsteroidogenic cells. Proc. Natl. Acad. Sci. USA, 85, pp. 699-703.

9. Luzikov, V.N., Novikova, L.A., Whelan, J., Hugosson, M. & Glaser, E. (1994). Import of the mammalian cytochrome P450 (scc) precursor into plant mitochondria. Biochem. Biophys. Res. Commun.,199, pp. 33-36.

10. Slominski, A.T., Li W., Kim, T.K., Semak, I., Wang, J., Zjawiony, J.K. & Tuckey, R.C. (2015). Novel activities of CYP11A1 and their potential physiological significance. J. Steroid Biochem. Mol. Biol., 151, pp. 25-37.

11. Bauer, P, Munkert, J, Brydziun, M, Burda, E, Muller-Uri, F, Groger, H, Muller, Y. A. & Kreis, W. (2010). Highly conserved progesterone 5b-reductase genes (P5bR) from 5b-cardenolide-free and 5b-cardenolide-producing angiosperms. Phytochemistry, 71, pp. 1495-1505.

12. Finsterbuch, A., Lindemann, P. & Grimm, R. (1999). D5-3b-hydroxysteroid dehydrogenase from Digitalis lanata Ehrh. - a multifunctional enzyme in steroid metabolism? Planta, 209, pp. 478-486.

13. Herl, V., Fischer, G., Reva, V. A., Stiebritz, M, Muller, Y. A., Muller-Uri, F. & Kreis, W. (2009). The VEP1 gene (At4g24220) encodes a short-chain dehydrogenase/reductase with 3-oxo-D4,5-steroid 5b-reductase activity in Arabidopsis thaliana L. Biochimie, 91, pp. 517-525.

14. Lindemann, P. & Luckner, M. (1997). Biosynthesis of pregnane derivatives in somatic embryons of Digitalis lanata. Phytochemistry, 46, No. 3. P. 507-513.

15. Simersky R., Novak O., Morris D.A., Pouzar V. & Strnad M. (2009). Identification and quantification of several mammalian steroid hormones in plants by UPLC-MS/MS. J. Plant Growth Regul., 28, pp. 125-136.

16. Iino, M., Nomura, T., Tamaki, Y., Yamada, Y., Yoneyama, K., Takeuchi, Y., Mori, M., Asami, T., Nakano, T. & Yokota, T. (2007). Progesterone: its occurrence in plants and involvement in plant growth. Phytochemistry, 68. pp. 1664-1673.

17. Ylstra, B., Touraev, A., Brinkmann, A.O., Heberle-Bors, E. & Tunen, A.V. (1995). Steroid hormones stimulate germination and tube growth of in vitro matured tobacco pollen. Plant Physiol., 107, pp. 639-643.

18. Spivak, S.G., Berdichivets, I.N., Yarmolinskiy, D.G., Maneshina, T.V., Shpakovskiy, G.V., Kartel, N.A. (2009). Development and characterization of transgenic tobacco plants (Nicotiana tabacum L.) expressing CYP11A1 cDNA of cytochrome P450scc. Genetics, 45(9), pp. 1217-1224 [in Russian].

19. Shishlova, A.M., Kartel, N.A., Sakhno, L.A., Morgun, B.V. & Kuchuk, N.V. (2010). Iserting CYP11A1 cDNA of cytochrome P450scc of animal origin into rapeseed plants. Molekulyarnaya i prikladnaya genetika: sb. nauch. tr. In-ta genetiki i cytologii NAN Belarusi. Minsk, 11, pp. 12-19 [in Belarusian].

20. Shishlova-Sokolovskaya, A.M., Kuchuk, N.V., Shishlov, M.P. & Kartel, N.A. (2011). Production of transgenic spring rape plants (Brassica napus L. var. oleifera DC.) Expressing cytochrome P450scc cDNA of animal origin. Vestsi NANB. biyal. navuk., 1, pp. 27-33 [in Russian].

21. Shishlova-Sokolovskaya, A.M., Kartel, N.A. & Shishlov, M.P. (2017). Biometric analysis of transgenic spring rapeseed plants with the genes of animal origin cyp11A1 and bacterial bar origin. Fiziol. rast. genet., 49 (3), pp. 218-228 [in Ukrainan].

22. Raldugina, G.N., Gorelova, S.V. & Kozhemyakina, A.V. (2000). Stability of transgene inheritance in rapeseed plants. Plant Physiology, 47 (3), pp. 437-445 [in Russian].

23. Martha, A.C. & Beare-Rogers, J.L. (1988). Influence of diet on (n-3) and (n-6) fatty acids in monkey erythrocytes. Lipids, 23(5), pp. 501-503.

24. Singh, S.P., Jeena, A.S., Kumar, R. & Sacan, J.N. (2002). Variation for quality parameters and fatty acids in Brassica and related species. Agric. Sci. Dig., 22, pp. 205-206.

25. Gerald, J.S. (1986). Analysis of the relationships of environmental factors with seed oil and fatty acid concentrations of wild annual sunflower. Field Crops Research, 15 (1), pp. 57-72.

26. Schulte, L.R., Ballard, T., Samarakoon, T., Yao, L., Vadlani, P., Staggenborg, S. & Rezac, M. (2013). Increased growing temperature reduces content of polyunsaturated fatty acids in four oilseeds crops. Industrial Crops and Products, 51, pp. 212-219.

27. Flagella, Z., Rotunno, T., Tarantino, E., Caterina, R.D. & Caro, A.D. (2002). Changes in seed yield and oil fatty acid composition of high oleic sunflower (Helianthus annuus L.) hybrids in relation to the sowing date and the water regime. European Journal of Agronomy, 17, pp. 221-230.

28. Piao, X., Choi, S.Y., Jang, Y.S., So, Y.S., Chung, J.W., Lee, S., Jong, J. & Kim, H.S. (2014). Effect of genotype, growing year and planting date on agronomic traits and chemical composition in sunflower (Helianthus annuus L.) germplasm. Plant Breeding and Biotechnology, 2, pp. 35-47.

29. Pritchard, F.M., Eagles, H.A., Norton, R.M., Salisbury, P.A. & Nicolas, M. (2000). Environmental effects on seed composition of Victorian canola. Australian Journal of Experimental Agriculture, 40(5), pp. 679-685.