Fiziol. rast. genet. 2020, vol. 52, no. 5, 434-448, doi: https://doi.org/10.15407/frg2020.05.434

Osmotolerance of т4 generation monocotyledonous and dicotyledonous plants with suppressed expression of proline catabolism gene

Komisarenko A.G., Mykhalska S.I., Kurchii V.M.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

Analysis of transgene function retention in seed generation (Т4) of genetically modified plants of maize, wheat and sunflower was carried out. It was shown that about 80–85 % of seeds of plants created by the biotechnological method had the ability to germinate under conditions of water deficiency and salinization, while in plants of the original forms this index was 20—28 %. Variability in transgene expression among individual variants of the seed generation of genetically modified forms was noted. Almost 65 % of Т4 seedlings of corn and wheat withstood the conditions of super hard osmotic stress created by adding 0,8 M manite to the culture medium, which was lethal to the original forms. Progenies of transgenic plants were also characterized by an increased level of resistance to drought created by the water cessation, which was manifested in the indices of growth processes. At the stage of restoration after the action of prolonged dehydration, the biotechnological plants of sunflower were 17 cm higher than the original form and had 1.5 times larger biomass. Maintaining the viability of genetically modified plants under hard stressful conditions was associated with an increase in the level of free L-proline (Pro). Genetically modified plants had 1.5—2 times higher Pro content compared to the original form both under normal moisture supply and under its deficiency, which may result from partial suppression of the proline dehydrogenase (PDH, pdh) gene. It was found that under normal growth conditions, the activity of the PDH enzyme in transgenic Т4 maize and sunflower seedlings was almost 3 times lower than in the original forms, while for wheat, this difference was 1.6 times. The tendency to lower relatively to control PDH activity in the Т4 generation of the studied representatives of transgenic monocotyledonous and dicotyledonous plants was observed at all stages of growth.

Keywords: Zea mays L., Triticum aestivum L., Helianthus annuus L., genetic modification, seed generation, proline dehydrogenase, proline, osmotic resistance

Fiziol. rast. genet.
2020, vol. 52, no. 5, 434-448

Full text and supplemented materials

Free full text: PDF  

References

1. Morgun, V.V., Dubrovna, O.V. & Morgun, B.V. (2016). Modern biotechnologies for stress-resistant wheat plants. Fiziol. rast. genet., 48, No. 3, pp. 196-213 [in Ukrainian]. https://doi.org/10.15407/frg2016.03.196

2. Sergeeva, L.E., Mykhalska, S.I. & Komisarenko, A.G. (2019). Modern biotechnologies for increasing plant resistance to osmotic stresses. Kyiv: Kondor [in Russian].

3. Morgun, B.V. & Tishchenko, E.N. (2014). Molecular biotechnology to improve the resistance of cultivated cereals to osmotic stress. Kyiv: Logos [in Russian].

4. Ortiz, R., Sayre, K.D., Govaerts, B., Gupta, R., Subbarao, G.V., Ban, T., Hodson, D., Dixon, J.M., Ortiz-Monasterio, J.I. & Reynolds, M. (2008). Climate change: Can wheat beat the heat? Agriculture, Ecosystems & Environment, 126, No. 1-2, pp. 46-58. https://doi.org/10.1016/j.agee.2008.01.019

5. Deyneko, Ye.V. (2014). Geneticheskaya inzheneriya rasteniy. Vavilovskiy zhurnal genetiki i selektsii, 18, No. 1, pp. 125-137 [in Russian].

6. Abiri, R., Valdiani, A., Maziah, M., Shaharuddin, N.A., Sahebi, M., Yusof, Z.N.B., Atabaki, N. & Talei, D. (2016). A critical review of the concept of transgenic plants: Insights into pharmaceutical biotechnology and molecular farming. Curr Issues Mol Biol., 18, pp. 21-42. https://doi.org/10.21775/cimb.018.021

7. Altpeter, F., Springer, N.M., Bartley, L.E., Blechl, A.E., Brutnell, T.P., Citovsky, V., Conrad, L.J., Gelvin,S.B., Jackson, D.P., Kausch, A.P., Lemaux, P.G., Medford, J.I., Orozco-Cardenas, M.L. & Tricoli, D.M. (2016). Advancing crop transformation in the era of genome editing. Plant Cell., 28, pp. 1510-1520. https://doi.org/10.1105/tpc.16.00196

8. Dubrovna, O.V. & Morgun, B.V. (2018). Modern Agrobacterium-mediated transformation of wheat. Fiziol. rast. genet., 50, No. 3, pp. 187-217 [in Ukrainian]. https://doi.org/10.15407/frg2018.03.187

9. Kochetov, A.V. & Shumny, V.K. (2017). Transgenic plants as genetic models for studying functions of plant genes. Russian Journal of Genetics: Applied Research, 7, No. 4, pp. 421-427. https://doi.org/10.1134/S2079059717040050

10. Tishchenko, E.N., Mykhalska, S.I., Kurchii, V.M. & Komisarenko, A.G. (2017). Genetic transformation of corn and wheat using genes of transcription factors: achievements and prospects for practical application. Fiziol. rast. genet., 49, pp. 384-397 [in Russian]. https://doi.org/10.15407/frg2017.05.384

11. Kochetov, A.V. & Shumny, V.K. (2016). Transgenic plants as genetic models for stu­dying the functions of plant genes. Vavilovskiy zhurnal genetiki i selektsii, 20, No. 4, pp. 475-481. https://doi.org/10.18699/VJ16.179

12. Djilianov, D., Georgieva, T., Moyankova, D., Atanassov, A., Shinozaki, K. & Smeeken, S.C.M. (2005). Improved abiotic stress tolerance in plants by accumulation of osmoprotectants - gene transfer approach. Biotechnol. & Biotechnological Equipment, 19, pp. 63-71. https://doi.org/10.1080/13102818.2005.10817287

13. Kolupaev, Yu.E., Vainer, A.A. & Yastreb, T.O. (2014). Proline: physiological functions and regulation of the content in plants under stress conditions Newsletter. Kharkiv. nat. agrarian. un-tu. Ser. Biol., No. 2, pp. 6-22 [in Russian].

14. Sinha, S.K. (2010). RNAi induced gene silencing in crop improvement. Physiol. Mol. Biol. Plants, 16, No. 4, pp. 321-332. https://doi.org/10.1007/s12298-010-0036-4

15. Mykhalska, S.I., Sergeeva, L.E., Matveeva, A.Yu., Kobernik, N.I., Kochetov, A.V., Tishchenko, E.N. & Morgun, V.V. (2014). Increasing the content of free proline in osmotolerant transgenic maize plants with double-stranded RNA suppressor of the proline dehydrogenase gene. Fiziol rast. genet., 46, No. 6, pp. 482-489 [in Russian].

16. Komisarenko, A.G. & Mykhalska, S.I. (2017). The free proline levels in transgenic sunflower (Helianthus annuus L.) T3 plants with double-stranded proline dehydrogenase gene RNA-suppressor. Faktory eksperym. evolyutsiyi orhanizmiv, 20, pp. 211-214 [in Ukrainian]. https://doi.org/10.7124/FEEO.v20.766

17. Ibragimova, Ya.S., Gerasimova, S.V. & Kochetov, A.V. ( 2012). The role of the proline dehydrogenase gene in maintaining stress resistance in plants. Fiziologiya rasteniy, 59, No. 1, pp. 99-107 [in Russian]. https://doi.org/10.1134/S1021443712010086

18. Voronova, S.S., Goncharuk, O.M., Bavol, A.V. & Dubrovnaya, O.V. (2015). Genetic transformation of common wheat using vector constructs containing genes for proline metabolism. Visn. Ukr. t-va genetikiv i selektsioneriv, 13, No. 1, pp. 28-33 [in Russian].

19. Tishchenko, E.N. (2013). Genetic engineering using L-proline metabolism genes to increase plant osmotolerance. Fiziol. rast. genet., 45, No. 6, pp. 488-500 [in Russian]. https://dspace.nbuv.gov.ua/handle/123456789/159371

20. Dorokhov, Yu.L. (2007). Silence of genes in plants. Molekulyar. Biologiya, 41, No. 4, pp. 579-592 [in Russian]. https://doi.org/10.1134/S0026893307040012

21. Wang, Y.H. (2008). How effective is T-DNA insertional mutagenesis in Arabidopsis? J. Biochem. Tech. 1, No. 1, pp. 11-20.

22. Wolffe, A.P. & Matzke, M.A. (1999). Epigenetics: regulation through repression. Science, 286. pp. 481-486. https://doi.org/10.1126/science.286.5439.481

23. Tishchenko, O.M., Komisarenko, A.G., Mykhalska, S.I., Sergeeva, L.E., Adamenko, N.I., Morgun, B.V. & Kochetov, A.V. (2014). Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.) in vitro and in planta using the LBA4404 strain carrying the pBi2E plasmid with a double-stranded RNA suppressor of the proline dehydrogenase gene. Tsitologiya i genetika, 48, No. 4, pp. 19-30 [in Russian]. https://doi.org/10.3103/S0095452714040094

24. Mykhalska, S.I., Matveeva, A.Yu., Sergeeva, L.E., Kochetov, A.V. & Tishchenko, E.N. (2013). Study of free proline content in maize plants transformed in planta using LBA4404 carrying pBi2E with double-stranded RNA suppressor of the proline dehydrogenase gene. Izv. Samar. nauch. tsentra RA, 15, No. 3(5), pp. 1662-1665 [in Russian].

25. Andriushchenko, V.K., Sayanova, V.V., Zhuchenko, A.A., Diyachenko, N.I., Chilikina, L.A., Drozdov, V.V., Korochkina, S.K., Cherep, G.I., Medvedev, V.V. & Niutin, Yu.I. (1981). The modification of proline estimation method for detection drought tolerant forms of genus Lycopersicon Tourn. Izv. Akad. Nauk Mold. SSR, No. 4, pp. 55-60 [in Russian].

26. Mattioni, C., Lacerenza, N.G., Troccoli, A., de Leonardis, A.M. & di Fonzo, N. (1997). Water and salt stress-induced alterations in proline metabolism of Triticum durum seedlings. Physiol. Plant, 101, pp. 787-792. https://doi.org/10.1111/j.1399-3054.1997.tb01064.x

27. Dospekhov, B.A. (1985). Methods of field experiment. Moscow: Agropromizdat [in Russian].

28. Morgun, V.V. (2001). Problems of genetics and plant breeding in Ukraine at the turn of the millennium. Fiziologia i biokhimiya kult. rastenii, 33, No. 5, pp. 452-455 [in Ukrainian].

29. Komisarenko, A.G., Mykhalska, S.I. & Kurchii, V.M. (2020). Priority level of stiffness up to water deficiency T3 generation of biotechnological winter wheat growths (Triticum aestivum L.). Zbirnyk naukovykh prats. Biolohichni doslidzhennya. Zhytomyr, pp. 340-343 [in Ukrainian].

30. Pat. 97229 UA, IPC A01H 1/04, A01H 4/00, Method of selection of transgenic plants with increased level of resistance to water stress, Sergeeva, L.E., Komisarenko, A.G., Mychalska, S.I., Tishchenko, O.M., Publ. 10.03.2015 [in Ukrainian].

31. Marenkova, T., Deineco, E. & Shumny, V. (2007). Mosaic expression patternof the nptII gene in transgenic tobacco plants Nu 21. Russ. J. Genet., 43, No. 7, pp. 780-790. https://doi.org/10.1134/S1022795407070101

32. Mani, S., Van de Cotte, B., Van Montagu, M. & Verbruggen, N. (2002). Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiol., 128, No. 1, pp. 73-83. https://doi.org/10.1104/pp.010572

33. Nanjo, T., Kobayashi, M., Yoshiba,Y., Yoshitaka Kakubari, Y., Yamaguchi-Shinozaki, K. & Shinozaki, K. (1999). Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letters, 461, No. 3, pp. 205-210. https://doi.org/10.1016/S0014-5793(99)01451-9

34. Vij, S. & Tyagi, A. (2007). Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol. J., 3, pp. 361-380. https://doi.org/10.1111/j.1467-7652.2007.00239.x

35. Sergeeva, L.E., Mykhalska, S.I., Kurchiy, V.M. & Tishchenko, E.N. (2015). Free proline content in maize seedlings as an indicator of rapid responses to lethal osmotic stress in vitro. Fiziol. rast. genet., 47, No. 6, pp. 491-496 [in Ukrainian].