Fiziol. rast. genet. 2020, vol. 52, no. 4, 306-319, doi: https://doi.org/10.15407/frg2020.04.306

Loss of catalase 2 activity affects the ascorbate metabolism in Arabidopsis upon heavy metal stress

Buzduga I.M., Volkov R.A., Pаnchuk I.I.

  • Yuriy Fedkovych Chernivtsi National University  2 Kotsubinsky St., Chernivtsi, 58012, Ukraine

Three genes — Cat1, Cat2 and Cat3 coding for three isoforms of catalase (CAT) are present in the Arabidopsis thaliana genome. Two of these isoforms (CAT2, CAT3) are expressed in leaves, splitting hydrogen peroxide, which is generated in peroxisomes by photorespiration. The protective function of CAT upon excessive illumination (light stress) is well documented, but it remains still unclear what is the role of CAT 2 isoform in the maintenance of cellular redox balance upon oxidative stress caused by other stressors, e.g., high concentrations of heavy metal ions. Accordingly, we investigate the effect of copper and cadmium chlorides on the content of low molecular weight antioxidants — ascorbate/dehydroascorbate (Asc/DHA) in A. thaliana wild type and the knockout mutant line cat2, which lacks the CAT2 isoform. Obtained data indicate that in the cat2 knockout line metabolic alterations occur, which compensate for the decrease in CAT activity. These alterations are, at least partially, represented by activation of Asc/DHA metabolism. Although no hydrogen peroxide is generated in peroxisomes in the dark, these compensatory mechanisms remain active for several hours (metabolic «inertia»), leading to a transient shift of the redox balance towards reduction. An increase in the Cu2+ ions content in the leaf tissues leads to the oxidation of Asc to DHA and to the enhancement of lipid peroxidation, which induces a protective response aimed at stabilizing the Asc+DHA pool. Comparing to the Cu2+ ions, increase in the concentration of Cd2+ ions causes much smaller changes in the Asc and DHA content. Taking together our data show that CAT is not directly involved in plant protection upon accumulation of HM ions in leaves. However, the lack of CAT2 activity results in limitation of cell damage due to the activation of Asc/DHA metabolisms.

Keywords: Arabidopsis thaliana, catalase isoforms, oxidative stress, heavy metals, cadmium, copper, ascorbate, dehydroascorbate

Fiziol. rast. genet.
2020, vol. 52, no. 4, 306-319

Full text and supplemented materials

Free full text: PDF  

References

1. Reczek, C. & Chandel, N. (2015). ROS-dependent signal transduction. Cur. Opin. in Cell Biol., 33, pp. 8-13. https://doi.org/10.1016/j.ceb.2014.09.010

2. Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, S., Breusegem, F.V. & Noctor, G. (2010). Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J. Exp. Bot., 61, pp. 4197-4220. https://doi.org/10.1093/jxb/

3. Das, K. & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci., 2, pp. 1-12. https://doi.org/10.3389/fenvs.2014.00053

4. Buzduga, I.M., Volkov, R.A. & Panchuk, I.I. (2018). Metabolic compensation in Arabidopsis thaliana catalase-deficient mutants. Cytol. Genet., 52, No. 1, pp. 31-39. https://doi.org/10.3103/S0095452718010036

5. Sharma, I. & Ahmad, P. (2014). Catalase: a versatile antioxidant in plants. In Ahmad, P. (Ed.) Oxidative Damage to Plants, (pp. 131-148). Academic Press. https://doi.org/10.1016/B978-0-12-799963-0.00004-6

6. Queval, G., Issakidis-Bourguet, E., Hoeberichts, F.A., Vandorpe M., Gakiere, B., Vanacker, H. & Noctor, G. (2007). Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. The Plant J., 52, No. 4, pp. 640-657. https://doi.org/10.1111/j.1365-313X.2007.03263.x

7. Vandenabeele, S., Vanderauwera, S., Vuylsteke, M., Rombauts, S., Langebartels, C., Seidlitz, H.K., Zabeau, M., Montagu, M.V., Inze, D. & Breusegem, F.V. (2004). Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. The Plant J., 39, No. 1, pp. 45-58. https://doi.org/10.1111/j.1365-313X.2004.02105.x

8. Emamverdian, A., Ding, Y., Mokhberdoran, F. & Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World J., 1, pp. 1-18. https://doi.org/10.1155/2015/756120

9. Singh, S., Parihar, P., Singh, R., Singh, V. P. & Prasad, S. M. (2016). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci., 6, p. 1143. https://doi.org/10.3389/fpls.2015.01143

10. Ackova, D.G. (2018). Heavy metals and their general toxicity on plants. Plant Sci. Today, 5, No. 1, pp. 15-19. https://doi.org/10.14719/pst.2018.5.1.355

11. Liochev, S.I. (2018). The mechanism of Fenton-like reactions and their importance for biological systems. A biologist's view. In Metal ions in biological systems (pp. 1-39), CRC Press. https://doi.org/10.1201/9780203747605-1

12. Zhang, H., Lv, S., Xu, H., Hou, D., Li, Y. & Wang, F. (2017). H2O2 is involved in the metallothionein-mediated rice tolerance to copper and cadmium toxicity. Int. J. Mol. Sci., 18, pp. 1-12. https://doi.org/10.3390/ijms18102083

13. Ghori, N.H., Ghori, T., Hayat, M.Q., Imadi, S.R., Gul, A., Altay, V. & Ozturk, M. (2019). Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol., 1, pp. 1-22. https://doi.org/10.1007/s13762-019-02215-8

14. Puthur, J.T. (2016). Antioxidants and cellular antioxidation mechanism in plants. South Indian J. Biol. Sci., 2, No. 1, pp. 9-13. https://doi.org/10.22205/sijbs/2016/v2/i1/100335

15. Khan, M.I.R. & Khan, N.A. (2017). Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Singapore: Springer. https://doi.org/10.1007/978-981-10-5254-5

16. Araujoa, R.P., de Almeidaa, A.F., Pereiraa, L.S., Mangabeiraa, P.A.O., Souzaa, J.O., Pirovania, C.P., Ahnerta, D. & Baligar, V.C. (2017). Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicol. Environm. Safety, 144, pp. 148-157. https://doi.org/10.1016/j.ecoenv.2017.06.006

17. Rohozynskiy, M.S., Shelifist, A.E., Kostyshyn, S.S. & Volkov, R.A. (1998). Influence of heavy metals ions on plants in vitro. Fiziologiya i Biokhimiya Kult. Rastenii, 30, No. 6, pp. 465-471 [in Russian].

18. Doliba, I.M., Volkov, R.A. & Panchuk, I.I. (2011). Activity of catalase and ascorbate peroxidase in Cat2 knock-out mutant of Arabidopsis thaliana upon cadmium stress. Visnik Ukrainskogo Tovaristva Genetikiv i selekcioneriv, 9, No. 2, pp. 200-208 [in Ukrainian].

19. Buzduga, I.M. & Panchuk, I.I. (2013). Effect of copper on ascorbate peroxidase activity in Cat2 knock-out mutant of Arabidopsis thaliana. Biological Systems (Scientific Herald of Chernivtsy University), 5, No. 4, pp. 466-470 [in Ukrainian].

20. Doliba, I.M., Volkov, R.A. & Panchuk, I.I. (2012). Effect of copper ions on lipid peroxidation in Cat2 knock-out mutant of Arabidopsis thaliana. Visnik Ukrainskogo Tovaristva Genetikiv i Selekcioneriv, 10, No. 1, pp. 13-19 [in Ukrainian].

21. Doliba, I.M., Volkov, R.A. & Panchuk, I.I. (2012). Effect of copper on catalase and ascorbate peroxidase activity in Arabidopsis thaliana. Fiziologiya i Biokhimiya Kult. Rastenii, 44, No. 2, pp. 153-161 [in Ukrainian].

22. Ramirez, L., Bartoli, C.G. & Lamattina, L. (2013). Glutathione and ascorbic acid protect Arabidopsis plants against detrimental effects of iron deficiency J. Exp. Bot., 1, pp. 1-20. https://doi.org/10.1093/jxb/ert153

23. Gallie, D.R. (2013). The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J. Exp. Botany, 64, pp. 433-443. https://doi.org/10.1093/jxb/ers330

24. Melidou, I. & Kanellis, A.K. (2017). Genetic control of ascorbic acid biosynthesis and recycling in horticultural crop. Front. Chem., 5, pp. 1-8. https://doi.org/10.3389/fchem.2017.00050

25. Venkatesh, J. & Won Park, S. (2014). Role of L-ascorbate in alleviating abiotic stresses in crop plants. Bot. Studies, 55, pp. 1-19. https://doi.org/10.1186/1999-3110-55-38

26. Mieda, T., Yabuta, Y., Rapolu, M., Motoki, T., Takeda, T., Yoshimura, K., Ishikawa, T. & Shigeoka, S. (2004). Feedback inhibition of spinach L-galactose dehydrogenase by L-ascorbate. Plant Cell Physiol., 45, pp. 1271-1279. https://doi.org/10.1093/pcp/pch152

27. Valpuesta, V. & Botella, M.A. (2004). Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci., 9, No. 12, pp. 573-577. https://doi.org/10.1016/j.tplants.2004.10.002

28. Foyer, C.H. & Noctor, G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiol., 155, pp. 2-18. https://doi.org/10.1104/pp.110.167569

29. Jozefczak, M., Bohler, S., Schat, H., Horemans, N., Guisez, Y., Remans, T., Vangronsveld, J. & Cuypers, A. (2015). Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of arabidopsis to cadmium. Ann. Bot., 116, No. 4, pp. 601-612. https://doi.org/10.1093/aob/mcv075

30. Yazlovytska, L.S., Rohozynskiy, M.S., Kostyshyn, S.S. & Volkov, R.A. (1999). Cu2+ and Ni2+ influence on RNA synthesis in maize seedlings. The Ukr. Biochem. J., 71, pp. 56-60 [in Ukrainian].

31. Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15, No. 3, pp. 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

32. Volkov, R.A., Panchuk, I.I. & Buzduga, I.M. (2017). Biochemical methods for plant studies. Chernivtsi: Ruta [in Ukrainian].

33. Luwe, M.W.F. (1993). Role of ascorbate in detoxify in ozone in the appoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol., 101, pp. 969-976. https://doi.org/10.1104/pp.101.3.969

34. Engel, J. (1997). Signifikante Schule der schlichten Statistik. Fuerth: Filander Verlag.

35. Doliba, I.M., Dolzhitska, A.G. & Panchuk, I.I. (2012). Rapid accumulation of the ions of cadmium in leaves of Arabidopsis activate the membrane lipid peroxidation. Biological Systems (Scientific Herald of Chernivtsy University), 4, pp. 366-371 [in Ukrainian].

36. Ahmad, J., Ali, A.A., Baig, M.A., Iqbal, M., Haq, I. & Qureshi, M.I. (2019). Role of phytochelatins in cadmium stress tolerance in plants. In Cadmium Toxicity and Tolerance in Plants (pp. 185-212), Academic Press. https://doi.org/10.1016/B978-0-12-814864-8.00008-5

37. Karam, E.A. & Keramat, B. (2017). Hydrogen sulfide protects coriander seedlings against copper stress by regulating the ascorbate-glutathione cycle in leaves. J. Plant Process Function, 5, No. 18, pp. 1-6.

38. Hojati, M., Modarres-Sanavy, S.A.M., Enferadi, S.T., Majdi, M., Ghanati, F., Farzadfar, S. & Pazoki, A. (2017). Cadmium and copper induced changes in growth, oxidative metabolism and terpenoids of Tanacetum parthenium. Environ. Sci. Pollut. Res., 1, pp. 1-12. https://doi.org/10.1007/s11356-017-8846-3