Fiziol. rast. genet. 2020, vol. 52, no. 4, 279-294, doi: https://doi.org/10.15407/frg2020.04.279

The effect of growth promotors and retardants on the morphogenesis, photosynthesis and productivity of tomatoes (Lycopersicon esculentum Mill.)

Rohach V.V.1, Kiriziy D.A.2, Stasik O.O.2, Mickevicius S.3, Rohach T.I.1

  1. Mikhail Kotsyubinsky Vinnytsya State Pedagogical University 32 Ostrozhsky St., Vinnytsya, 21100, Ukraine
  2. Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine
  3. Vytautas Magnus University, Faculty of Natural Sciences 8-212 Vileikos St., Kaunas, 44404, Lithuania

There were studied the peculiarities of growth processes, the formation of the leaf apparatus, its mesostructure and photosynthetic activity, as well as the biological productivity of the Bobcat hybrid tomato plants under the influence of synthetic analogues of growth promoting hormones — 1-naphthaleneacetic acid (1-NAA), gibberellic acid (GA3), 6-benzylaminopurine (6-BAP), and retardants — chloromequate chloride (ССС-750), tebuconazole (EW-250), ethephon (2-chloroethylphosphonic acid, 2-CEPA), which differ in the action mechanism. It was revealed that growth promotors increased, and retardants reduced the tomato plants height. It was established that 1-NAA, GA3, and CCC-750 increased the leaf number on the plant, while under 2-CEPA treatment, the index was less than the control, and under the EW-250 action it remained practically unchanged. All growth regulators, except 2-CEPA, increased the leaf blades number, the fresh weight, and leaf area. All growth promotors increased the whole plant dry weight, while the retardants EW-250 and CCC-750 did not affect this index, and 2-CEPA significantly reduced it. All retardants and 6-BAP significantly increased the total chlorophyll content in tomato leaves, while under the action of GA3 this index decreased. The retardants EW-250 and CCC-750, and the growth promotor 6-BAP contributed to the thickening of the tomato leaf chlorenchyma, and the ethylene producer 2-CEPA reduced it. Under the influence of all growth regulators, except 2-CEPA, the volume of columnar parenchyma cells increased. It was established that at the stage of fruit formation onset, all growth regulators, except 1-NAA, increased the rate of CO2 assimilation, photorespiration, dark respiration and transpiration. All growth regulators, except 2-CEPA, contributed to the increase in tomatoes yield, while the use of the growth promotor 6-BAP and the retardant EW-250 proved to be the most effective.

Keywords: Lycopersicon esculentum Mill., tomatoes, growth promotors, retardants, morphogenesis, leaf apparatus, mesostructure, chlorophyll, photosynthesis, respiration, productivity

Fiziol. rast. genet.
2020, vol. 52, no. 4, 279-294

Full text and supplemented materials

Free full text: PDF  

References

1. Morgun, V.V., Yavorska, V.K. & Dragovoz, I.V. (2002). The problem of growth regulators in the world and its solution in Ukraine. Fiziologiya i biokhimiya cult. rastenii. 34, No. 5, pp. 371-375 [in Ukrainian].

2. Kuryata, V.G. (2009). Retardants are modifiers of the hormonal status of plants. In Plant physiology: problems and prospects of development, Vol. 1, (pp. 565-589), Kyiv: Logos [in Ukrainian].

3. Hrytsaienko, Z.M., Ponomarenko, S.P., Karpenko, V.P. & Leontiuk, I.B. (2008). Biologically active substances in crop production. Kyiv: ZAT Nichlava [in Ukrainian].

4. Sugiura, D., Sawakami, K., Kojim, M., Sakakibara, H., Terashima, I. & Tateno, M. (2015). Roles of gibberellins and cytokinins in regulation of morphological and physiological traits in Polygonum cuspidatum responding to light and nitrogen availabilities. Functional Plant Biology, 42(4), pp. 397-409. https://doi.org/10.1071/FP14212

5. Polyvanyi, S.V. (2018). Anatomic and morphological characteristics of leaf apparatus construction of oil poppy under the action of growth stimulant. Naukovi zapysky Ternopilskoho derzhavnoho pedahohichnoho universytetu. Seriia: Biolohiia, No. 3-4, pp. 21-27 [in Ukrainian].

6. Khodanitska, O.O. & Kuryata, V.G. (2011). The effect of treptolem on seed yield and quality characteristics of flaxseed oil. Kormy i kormovyrobnyctvo, 70, pp. 54-59 [in Ukrainian].

7. Ren, B., Zhang, J., Dong, S., Liu, P. & Zhao, B. (2017). Regulations of 6-benzyladenine (6-BA) on leaf ultrastructure and photosynthetic characteristics of waterlogged summer maize. J. Plant Growth Regul., 36(3), pp. 743-754. https://doi.org/10.1007/s00344-017-9677-7

8. Khan, M.N. & Mohammad, F. (2013). Effect of GA3, N and P ameliorate growth, seed and fibre yield by enhancing photosynthetic capacity and carbonic anhydrase activity of linseed. Integrative Agriculture, 12(7), pp. 1183-1194. https://doi.org/10.1016/S2095-3119(13)60443-8

9. Luo, Y., Yang, D., Yin, Y., Cui, Z., Li, Y., Chen, J., Zheng, M., Wang, Y., Pang, D., Li, Y. & Wang, Z. (2016). Effects of exogenous 6-BA and nitrogen fertilizers with varied rates on function and fluorescence characteristics of wheat leaves post anthesis. Scientia Agricultura Sinica, 49(6), pp. 1060-1083. https://doi.org/10.3864/j.issn.0578-1752.2016.06.004

10. Kuryata, V.G., Shevchuk, O.A., Kiriziy, D.A. & Gulyaev, B.I. (2002). Structural and functional organization of sugar beet leaf by the action of retardants. Fiziologiya i biokhimiya cult. rastenii, 34, No. 1, pp. 11-16 [in Ukrainian].

11. Tkachuk, O.O. (2015). Influence of Paclobutrazol on the Anatomical and Morphological Indices of Potato Plants. Lesya Ukrainka Eastern European National University Scientific Bulletin. Series: Biological Sciences, No. 2, pp. 47-50. [in Ukrainian].

12. Rogach, V.V., Kravets, O.O., Buina, O.I. & Kuryata, V.G. (2018). Dynamic of accumulation and redistribution of various carbohydrate forms and nitrogen in organs of tomatoes under treatment with retardants. Regul. Mech. Biosyst., 9(2), pp. 293-299. doi: 10.15421/021843 [in Ukrainian]. https://doi.org/10.15421/021843

13. Rogach, V.V., Kuryata, V.G. & Polyvanyi, S.V. (2016). The effect of retardants on morphogenesis, productivity and composition of higher fatty acids of winter rapeseed oil. Vinnitsa: TOV «Nilan-LTD» [in Ukrainian].

14. Yooyongwech, S., Samphumphuang, T., Tisarum, R., Theerawitaya, C. & Chaum, S. (2017). Water-deficit tolerance in sweet potato (Ipomoea batatas (L.) Lam.) by foliar application of paclobutrazol: role of soluble sugar and free proline. Front Plant Sci., 8, 1400. https://doi.org/10.3389/fpls.2017.01400

15. Poprotska, I.V., Kuryata, V.G., Polyvanyi, S.V., Golunova, L.A. & Prysedsky, Y.G. (2019). Effect of gibberellin and retardants on the germination of seeds with different types of reserve substances under the conditions of skoto- and photomorphogenesis. Biologija, 65, No. 4, pp. 296-307. https://doi.org/10.6001/biologija.v65i4.4123

16. Rohach, V.V. & Rohach, T.I. (2015). Influence of synthetic growth stimulators on morphological and physiological characteristics and biological productivity of potato culture. Visn. Dnipropetr. Univ. Ser. Biol. Ekol., 23(2), pp. 221-224. [in Ukrainian]. https://doi.org/10.15421/011532

17. Kuriata, V.G., Rohach, V.V., Rohach, T.I. & Khranovska, T.V. (2016). The use of antigibberelins with different mechanisms of action on morphogenesis and production process regulation in the plant Solanum melongena (Solanaceae) Visn. Dnipropetr. Univ. Ser. Biol. Ekol., 24(1), pp. 221-224. https://doi.org/10.15421/011628

18. Rogach, V.V., Poprotska, I.V. & Kuryata, V.G. (2016). Effect of gibberellin and retardants on morphogenesis, photosynthetic apparatus and productivity of the potato. Visn. Dnipropetr. Univ. Ser. Biol. Ekol., 24(2), pp. 416-420. [in Ukrainian]. https://doi.org/10.15421/011656

19. Kuryata, V.H., Rogach, V.V., Buina, O.I., Kushnir, O.V. & Buinyi, O.V. (2017). Impact of gibberelic acid and tebuconazole on formation of the leaf system and functioning of source-sink plant system of solanaceae vegetable crops. Regul. Mech. Biosyst., 8(2), pp. 162-168. [in Ukrainian]. https://doi.org/10.15421/021726

20. Rohach, V.V. (2017). Influence of growth stimulants on photosynthetic apparatus, morphogenesis and production process of eggplant (Solanum melongena). Biosyst Divers., 25(4), pp. 297-304. [in Ukrainian]. https://doi.org/10.15421/011745

21. Kravets, O.O. (2019). Physiological bases of growth regulation and morphogenesis of tomatoes under gibberellin and retardants treatment (Unpublished candidate thesis). Institute of Plant Physiology and Genetics National Academy of Sciences of Ukraine, Kyiv, Ukraine [in Ukrainian].

22. Kazakov, Ye.O. (2000). Methodological bases of the experiment on plant physiology. Kyiv: Fitosotsiotsentr [in Ukrainian].

23. Mokronosov, A.T. & Borzenkova, R.A. (1978). Methodology for the quantitative assessment of the structure and functional activity of photosynthetic tissues and organs. Trudy po prikladnoj botanike, genetike i selekcii, 61, No. 3, pp. 119-131 [in Russian].

24. Kuryata, V.G. (1998). The effect of retardants on the mesostructure of raspberry leaves. Fiziologiya i biokhimiya cult. rastenii, 30, No. 2, pp. 144-149 [in Russian].

25. Gavrilenko, V.F., Ladygina, M.E. & Handobina, M.N. (1975). Great workshop on plant physiology. Moscow: Vysshaja shkola [in Russian].

26. Mokronosov, A.T. & Kovalev, A.G. (Eds.) (1989). Photosynthesis and bioproductivity: methods of determination. Moscow: Agropromizdat [in Russian].

27. Yan, Y., Wan, Y., Liu, W., Wang, X., Yong, T. & Yang, W. (2015). Influence of seed treatment with uniconazole powder on soybean growth, photosynthesis, dry matter accumulation after flowering and yield in relay strip intercropping system. Plant Production Science, 18(3), pp. 295-301. https://doi.org/10.1626/pps.18.295

28. Rogach, T.I. & Kuryata, V.G. (2018). Physiological bases of regulation of morphogenesis and productivity of sunflower by means of chlormequat chloride and treptolem. Vinnitsa: TVORY [in Ukrainian].

29. Rai, R.K., Tripathi, N., Gautam, D. & Singh, P. (2017). Exogenous application of ethrel and gibberellic acid stimulates physiological growth of late planted sugarcane with short growth period in sub-tropical Indian J. Plant Growth Regul., 36 (2), pp. 472-486. https://doi.org/10.1007/s00344-016-9655-5

30. Mao, J.-P., Zhang, D., Zhang, X., Li, K., Liu, Z., Meng, Y., Lei, C. & Han, M.-Y. (2018). Effect of exogenous indole-3-butanoic acid (IBA) application on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis. Scientia Horticulturae, 232, pp. 112-120. https://doi.org/10.1016/j.scienta.2017.12.013

31. Zheng, R., Wu, Y. & Xia, Y. (2012). Chlorocholine chloride and paclobutrazol treatments promoto carbohydrate accumulation in bulbs of Lilium Oriental hybrids «Sorbonne». J. Zhejiang Univ. Sci. B., 13(2), pp. 136-144. https://doi.org/10.1631/jzus.B1000425

32. Zhao, H., Cao, H., Ming-Zhen, P., Sun, Y. & Liu, T. (2017). The role of plant growth regulators in a plant aphid parasitoid tritrophic system. J. Plant Growth Regul., 36(4), pp. 868-876. https://doi.org/10.1007/s00344-017-9689-3

33. Kasem, M.M. & Abd El-Baset, M.M. (2015). Studding the Influence of Some Growth Retardants as a Chemical Mower on Ryegrass (Lolium perenne L.). Journal of Plant Sciences, 3(5), pp. 255-258. https://doi.org/10.11648/j.jps.20150305.12

34. Liu, Y., Fang, Y., Huang, M., Jin, Y., Sun, J., Tao, X., Zhang, G., He, K., Zhao, Y. & Zhao, H. (2015). Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) I: transcriptome analysis of the effects of uniconazole on chlorophyll and endogenous hormone biosynthesis. Biotechnol. Biofuels, 8, p. 57. https://doi.org/10.1186/s13068-015-0246-7

35. Xiaotao, D., Yuping, J., Hong, W., Haijun, J., Hongmei, Z., Chunhong, C. & Jizhu, Y. (2013). Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters, antioxidative system and carbohydrate accumulation in cucumber (Cucumis sativus L.) under low light. Acta Physiol Plant., 35(5), pp. 1427-1438. https://doi.org/10.1007/s11738-012-1182-9

36. Rogach, T.I. (2012). Effect of mixture of chlormequat-chloride and treptolem on morphogenesis and productivity of sunflower. Zbirnyk naukovykh prats VNAU, Seriia: Silskohospodarski nauky, 1(57), pp. 121-127 [in Ukrainian].

37. Kiriziy, D.A., Stasik, O.O., Pryadkina, G.A. & Shadchina, T.M. (2014). Photosynthesis. Vol. 2. Assimilation of CO2 and the mechanisms of its regulation. Kyiv: Logos [in Russian].

38. Stasik, O.O., Kiriziy, D.A. & Pryadkina, G.A. (2016). Photosynthesis and crop productivity. Fiziol. rast. genet., 48, No. 3, pp. 232-251. [in Russian]. https://doi.org/10.15407/frg2016.03.232

39. Mesejo, C., Rosito, S., Reig, C., Martinez-Fuentes, A. & Agusti, M. (2012). Synthetic auxin 3,5,6-TPA provokes Citrus clementina (Hort. ex Tan) fruitlet abscission by reducing photosynthate availability. J. Plant Growth Regul., 31(2), pp. 186-194. https://doi.org/10.1007/s00344-011-9230-z

40. Zhang, W., Xu, F., Cheng, H., Li, L., Cao, F. & Cheng, S. (2013). Effect of chlorocholine chloride on chlorophyll, photosynthesis, soluble sugar and flavonoids of Ginkgo biloba. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), pp. 97-103. https://doi.org/10.15835/nbha4118294

41. Stasik, O.O. (2014). Photorespiration: Metabolism and the physiological role. In Modern photosynthetic problems, Vol. 2, (pp. 505-535), Moskva-Izhevsk: Institute of Computer Research [in Russian].