Fiziol. rast. genet. 2018, vol. 50, no. 5, 383-401, doi: https://doi.org/10.15407/frg2018.05.383

Response of different efficiency symbiotic systems on drought and use of the exogenous lectin as an protector of its negative action

Rybachenko L.I., Kots S.Ya., Melnik V.M., Rybachenko O.R.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The response of symbiotic soybean systems created by contrasting strains and Tn5-mutants of Bradyrhizobium japonicum on the effect of insufficient water supply was studied, and the possibility of using exogenous lectin as a drought protector on a symbiotic apparatus of soybean plant has been researched. It was revealed that insufficient water supply had a negative influence on the processes of formation and functioning of soybean—B. japonicum symbiotic systems for all investigated rhizobium strains and Tn5-mutants. It was found that the use of B. japonicum Т21-2 strain for inoculation of soybean seeds allowed to form more effective symbiotic systems under optimal and insufficient water supply of plants compared with inoculation by rhizobia of strain 646. In addition, it was found that under conditions of insufficient moisture of the substrate symbiotic systems created with the T21-2 strain formed a smaller number, however, more active nitrogen-fixing root nodules than other studied strains. It is shown that the use of exogenous lectin at concentration of 100 mg/ml for treatment of soybean seeds activates the functioning of the symbiotic apparatus, increases the activity of ascorbate and guaiacol peroxidase in the roots and nodules of plants irrespective of the level of water supply. Such changes in soybean—B. japonicum systems are likely to indicate their higher stress tolerance to adverse conditions, in particular to insufficient water supply, and allow to considerate of soybean seeds lectin as protector of the adverse effects of drought.

Keywords: Bradyrhizobium japonicum, guaiacol peroxidase, ascorbate peroxidase, nitrogen-fixing activity, legume-rhizobial simbiosis, exogenous lectin, soybean

Fiziol. rast. genet.
2018, vol. 50, no. 5, 383-401

Full text and supplemented materials

Free full text: PDF  

References

1. Marino, D., Frendo, P., Ladrera, R. Zabalza, A., Puppo, A., Arrese-Igor, C. & Gonz«lez, E.M. (2008). Nitrogen fixation control under drought stress. Localized or systemic? Plant Physiol, 143, pp. 1968-1974. doi: https://doi: 10.1104/pp. 106.097139

2. Kots, S.Ya., Morgun, V.V., Patyka, V.P., Malichenko, S.M., Mamenko, P.M., Kiriziy, D.A., Mykhalkiv, L.M., Beregovenko, S.K. & Melnykova, N.M. (2011). Biological nitrogen fixation: legume-rhizobium symbiosis. Vol. 2. Kyiv: Logos [in Russian].

3. Spayk, G., Kondoroshi, A. & Hukas, P. (2002). The Rhizobiaceae. Molecular biology of plant-associated bacteria. Sankt-Peterburg [in Russian].

4. Krutylo, D.V. (2008). Nodule bacteria — heterotrophic and symbiotrophic ways of life. Silskohospodarska mikrobiolohiia. Chernihiv, iss. 7, pp. 147-161 [in Ukrainian].

5. Sellstedt, A., Staahl, L., Mattsson, M., Jonsson, K. & Hoegberg, P. (1993). Can the 15N dilution technique be used to study N2 fixation in tropical tree symbioses as affected by water deficit? J. Exp Bot., 44, pp. 1749-1755. https://doi.org/10.1093/jxb/44.12.1749

6. Williams, P.M. & De Mallorca, M.S. (1984) Effect of osmotically induced leaf moisture stress on nodulation and nitrogenase activity of Glycine max L. Plant Soil, 80, pp. 267-283. https://doi.org/10.1007/BF02161183

7. Pena-Cabriales, J.J. & Castellanos, J.Z. (1993). Effect of water stress on N2 fixation and grain yield of Phaseolus vulgaris L. Plant Soil, 152, pp. 151-155. https://doi.org/10.1007/BF00016345

8. Glyanko, A.K. & Vasileva, G.G. (2010). Active forms of oxygen and nitrogen in legume-rhizobial symbiosis. Prikladnaya biohimiya i mikrobiol., 46(1), pp. 21-28 [in Russian].

9. Apel, K. & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu. Rev. Plant Biol., 55, pp. 373-399. doi: https:// doi:10.1146/annurev.arplant.55.031903.141701 https://doi.org/10.1146/annurev.arplant.55.031903.141701

10. Esfahani, M.N. & Mostajeran, A. (2010). Rhizobial strain involvement in symbiosis efficiency of chickpea-rhizobia under drought stress: plant growth, nitrogen fixation and antioxidant enzyme activities. Acta Physiol. Plant, 33, pp. 1075-1083. doi: https://doi: 10.1007/ s11738-010-0635-2 https://doi.org/10.1007/s11738-010-0635-2

11. Vasileva, G.G., Glyanko, A.K. & Mironova, N.V. (2005). The content of hydrogen peroxide and the activity of catalase during inoculation with nodule bacteria of pea seedlings with different capacity for nodulation. Prikladnaya biohimiya i mikrobiol., 41(5), pp. 21-28 [in Russian].

12. Drozdenko, H.M., Mamenko, P.M., Kots, S.Ya. (2013). The activity of guaiacol and ascorbate peroxidase and protein composition of soybean roots during the formation and the early functioning of symbiotic system Glycine max—Bradyrhizobium japonicum. Visn. Kharkivskoho natsionalnoho ahrarnoho un-tu: Seriia Biolohiia, iss. 1, pp. 18-26 [in Ukrainian].

13. Melnikova, N.N., Kovalchuk, N.V., Kots, S.Ya. & Musatenko, L.I. (2009). Influence of soybean seeds lectins on the legume-rhizobium symbiosis formation and functioning. Fiziologiya i biohimiya kulturnyh rasteniy, 41(5), pp. 439-446 [in Ukrainian].

14. Lubyanova, A.R., Bezrukova, M.V., Fathutdinova, R.A. & Shakirova, F.M. (2009). Growthstimulating and protective effects of phytohemagglutinin on plants of common bean. Visn. Kharkivskoho natsionalnoho ahrarnoho un-tu: Seriia Biolohiia, iss. 2(17), pp. 40-46 [in Russian].

15. Peterburgskiy, A.V. (1963). Workshop on Agronomic Chemistry. Moskva: Kolos [in Russian].

16. Hardy, R.W.F., Holsten, R.D., Jackson, E.K. & Burns, R.C. (1968). The acetylene-ethylene assay for N2-fixation: laboratoty and field evaluation. Plant Physiol., 43, No. 8, pp. 1185-1207. https://doi.org/10.1104/pp.43.8.1185

17. Esfahani, M.N. & Mostajeran, A. (2011). Rhizobial strain involvement in symbiosis efficiency of chickpea-rhizobia under drought stress: plant growth, nitrogen fixation and antioxidant enzyme activitiy. Acta Physiol. Plant, 33, pp. 1075-1083. https://doi.org/10.1007/s11738-010-0635-2

18. Egley, G.H., Paul, R.N., Vaughn, R.C. & Duke, S.O. (1983). Role of peroxidase in the development of water impermeable seed coats in Sida sprinosa L. Planta, 157, No. 1, pp. 224-232. doi: https://doi: 10.1007/s11738-010-0635-2 https://doi.org/10.1007/s11738-010-0635-2

19. Sibgatullina, G.V., Haertdinova, L.R., Gumerova, E.A., Akulov, A.N., Kostyukova, Yu.A. & Nikonova, N.I. (2011). Methods for determining the redox status of cultured plant cells: a teaching aid. Kazan: Kazanskiy Federalnyiy universitet [in Russian].

20. Nakano, Y. & Asada, K. (1981). Hydrogen peroxidase is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22, pp. 867-880. doi: https:// doi.org/10.1093/oxfordjournals.pcp.a076232

21. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of the microgram quantities of protein utilising: the principle of protein-dye binding. Anal. Biochem., 72, pp. 248-254. doi: https://doi.org/10.1016/0003-2697(76)90527-3

22. Dospehov, B.A. (1985). Methodology of field experiment. Moskva: Agropromizdat [in Russian].

23. Tihonovich, I.A. & Provorov, N.A. (1998). Genetics of symbiotic nitrogen fixation with the basics of selection. Sankt-Peterburg: Nauka [in Russian].

24. Zahran, H.H. (1999). Rhizobium legume symbiosis and nitrogen fixation under sever conditions and in an arid climate. Microbiol. Mol. Biol. Rev., 63, pp. 968-989.

25. Vasilyuk, V.M., Mamenko, P.M. & Beregovenko, S.K. (2007). Investigation of the symbiotic properties of Tn5-mutants of soybean nodule bacteria. Silskohospodarska mikrobiolohiia, 6, pp. 39-50 [in Ukrainian].

26. Semenova, E.A. (2012). Effect of water stress on the activity and electrophoretic spectra of antioxidant enzymes in soybean seeds. Sovremennyie naukoemkie tehnologii: Biologicheskie nauki, 7, pp. 33-35 [in Russian].

27. Iturbe-Ormaetxea, I., Matamoros, M.A., Rubio, M.C., Dalton, D.A. & Becana, M. (2001). The antioxidants of legume nodule mitochondria. Mol. Plant-Microbe Interact., 14, No. 10, pp. 1189-1196. https://doi.org/10.1094/MPMI.2001.14.10.1189

28. Nikolaeva, M.K., Maevskaya, S.N., Shugaev, A.G. & Buhov, N.G. (2010). The effect of drought on the chlorophyll content and enzyme activity of the antioxidant system in the leaves of three wheat varieties, differing in productivity. Fiziologiya rasteniy, 57(1), pp. 94-102 [in Russian].

29. Worrall, V.S. & Roughley, R.J. (1976). The effect of moisture stress on infection of Trifolium subterraneum L. by Rhizobium trifolii Dang. J. Exp Bot., 27, pp. 1233-1241. https://doi.org/10.1093/jxb/27.6.1233

30. Layzell, D.B., Del Castillo, L.D., Hunt, S., Kuzma, M., Cauwenberghe, O. van, & Oresnik, I. (1992). The regulation of oxygen and its role in regulation nodule metabolism. New Horizons in Nitrogen Fixation: Proceedings of the 9th International Congress on Nitrogen Fixation (Cancun, Mexico, 6—12 December, 1992) (pp. 393-398) . Cancun.

31. Kolupaev, Yu.E. & Karpets, Yu.V. (2010). Formation of adaptive reactions of plants to the action of abiotic stresses. Kyiv: Osnova [in Russian].

32. Puppo, A., Rigaud, J. & Job, D. (1981). Role of superoxide anion in leghemoglobin autoxidation. Plant Sci. Lett., 22, pp. 353-360. https://doi.org/10.1016/0304-4211(81)90081-X

33. Cerova, A.T. & Tsyiganov, V.E. (2014). Aging of the symbiotic nodule in legumes; molecular-genetic and cellular aspects. Celskohosyastvenna biologiya, 5, pp. 3-15 [in Russian].