Fiziol. rast. genet. 2017, vol. 49, no. 2, 110-120, doi: https://doi.org/10.15407/frg2017.02.110

IRAP-analysis of genetically modified wheat plants obtanied by Agrobacterium-mediated transformation in vitro

Dubrovna O.V., Goncharuk A.N., Velikozhon L.G.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The polymorphism of DNA regions, flanked by inverted repeats LTR retrotransposons, in genetically modified wheat plants obtained by Agrobacterium-mediated transformation in vitro comprising ornithine aminotransferase gene has been analyzed. The most effective was the use of primer to the retrotransposon Sukkula, where the spectrum of DNA amplification products revealed four new amplicons in nine plants studied. The findings suggest that it is the insertion of foreign DNA capable of inducing transposition of retrotransposons Sukkula/Nikita and Wham/Sabrina, becauseĀ  in control plants derived from in vitro culture their activity has not been established.

Keywords: Triticum aestivum L., Agrobacterium-mediated transformation, retrotransposons, IRAP-PCR

Fiziol. rast. genet.
2017, vol. 49, no. 2, 110-120

Full text and supplemented materials

Free full text: PDF  

References

1. Bavol, A.V., Velikozhon, L.G., Pikalo, S.M. & Dubrovna O.V. (2016). IRAP-analysis of plant-regenerants of triticale, resistant to water deficit. Factory experimentalnoi evolutsii organizmiv, 19, pp. 73-78 [in Ukrainian].

2. Bavol, A.V., Dubrovna, O.V., Goncharuk, O.M. & Voronova S.C. (2014). Agrobacterium-mediated transformation of bread wheat with the use of callus cultures. Factory experimentalnoi evolutsii organizmiv, 15, pp. 16-19 [in Ukrainian].

3. Bavol, A.V., Dubrovna, O.V. & Morgun, B.V. (2013). Obtaining and analysis by IRAP-PCR of transgenic bread wheat cell lines. Biotechnol. Acta, 6, No. 6, pp. 113-119 [in Ukrainian]. https://doi.org/10.15407/biotech6.06.113

4. Bavol, A.V., Lyalko, I.I., Voronova, S.S., Goncharuk, O.M. & Dubrovna, O.V. (2015). Passing of meiosis in genetically modified wheat plants, obtained from Agrobacterium-mediated transformation. Fiziol. rast. genet., 47, No. 6, pp. 536-544 [in Ukrainian].

5. Boronnikova, S.V. & Kalendar, R.P. (2010). Using the IRAP method for analyzing the genetic variability of populations of resource and rare plant species. Genetics, 46, No. 1, pp. 44-50 [in Russian].

6. Tsvetkov, I.A., Ivanov, A.N. & Glazko, V.I. (2006). Genetic differentiation of rice varieties by IRAP markers. Izv. Timir. Acad. of Agricul., 4, pp. 155-159 [in Russian].

7. Abdul, R., Ma, Z. & Wang, H. (2010). Genetic transformation of wheat (Triticum aestivum L.): A review. Triticeae Genomics and Genetics, 1, No. 2, pp. 1-7.

8. Bayram, E., Yilmaz, S. & Hamat-Mecbur, H. (2012). Nikita retrotransposon movements in callus cultures of barley (Hordeum vulgare L.). Plant OMICS, 5, No. 3, pp. 211-217.

9. Bento, M., Pereira, H., Rocheta, M., Gustafson, P., Viegas, W. & Silva.M. (2008). Polyploidization as a retraction force in plant genome evolution: Sequence rearragements in triticale. PLoS One. 3, No. 1, p. 1402. https://doi.org/10.1371/journal.pone.0001402

10. Bhatt, A., Lister, C., Crawford, N. & Dean, C. (1998). The transposition frequency of Tag1 elements is increased in transgenic Arabidopsis lines. Plant Cell, 10, pp. 427-434. https://doi.org/10.1105/tpc.10.3.427

11. Casacuberta, J. & Santiago, N. (2003). Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene, 311, pp. 1-11. https://doi.org/10.1016/S0378-1119(03)00557-2

12. Cassells, A.C. & Curry, R.F. (2001). Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell, Tissue Organ Cult., 64, pp. 145-157. https://doi.org/10.1023/A:1010692104861

13. Choulet, F., Wicker, T., Rustenholz, C., Paux, E., Salse J., Leroy, P., Schlub, S., Le Paslier, M., Magdelenat, G., Gonthier, C., Couloux, A., Budak, H., Breen, J., Pumphrey, M., Liu, S., Kong, X., Jia, J., Gut, M., Brunel, D., Anderson, J., Gill, B., Appels, R., Keller, B. & Feuillet, C. (2010). Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell, 22, No. 6, pp. 1686-1701. https://doi.org/10.1105/tpc.110.074187

14. Clive, J. (2011). Global status of commercialized biotech GM Crops. ISAAA Brief, No. 43, pp. 1-8.

15. Filleur, S., Dorbe, M. & Cerezo M. (2001). An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett., 489, No. 2-3, pp. 220-224. https://doi.org/10.1016/S0014-5793(01)02096-8

16. Flugge, U.I. & Klosgen, R.B. (2004). Characterization of a T-DNA insertion mutant for the protein import receptor at Toc33 from chloroplasts. Mol. Genet. Genomics, 272, No. 4, pp. 379-396. https://doi.org/10.1007/s00438-004-1068-7

17. Gaspar, T., Franck, T., Bisbis, B., Kevers, C., Jouve, L., Hausman, J. & Dommes, J. (2002). Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul., 37, pp. 263-285. https://doi.org/10.1023/A:1020835304842

18. Gaspar, Y., Nam, J. & Schultz, C. (2004). Charactarization of the Arabidopsis lysinerich arabinogalactan-protein AtAGP17 mutant (rat1) that results in a decreased efficiency of agrobacterium transformation. Plant Physiol., 135, No. 4., pp. 2162-2171. https://doi.org/10.1104/pp.104.045542

19. Kalendar, R., Grob, T., Regina, M., Suoniemi, A. & Schulman, A. (1999). IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet., 98, No. 5, pp. 704-711. https://doi.org/10.1007/s001220051124

20. Kalendar, R. & Schulman, A. (2006). IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature protocols, 1, No. 5. pp. 2478-2484. https://doi.org/10.1038/nprot.2006.377

21. Kidwell, M.G. & Lisch, D.R. (1998). Hybrid genetics. Transposons unbound. Nature, 393, pp. 22-23. https://doi.org/10.1038/29889

22. Kidwell, M.G. & Lisch, D.R.(2000). Transposable elements and host genome evolution. Trends Ecol. Evol., 15, pp. 95-99. https://doi.org/10.1016/S0169-5347(99)01817-0

23. Kumar, A. & Bennetzen, J. (1999). Plant retrotransposons. Annu. Rev. Genet., 33, pp. 479-532. https://doi.org/10.1146/annurev.genet.33.1.479

24. Leonard, J.M., Bollmann, S.R. & Hays, J.B. (2003). Reduction of stability of Arabidopsis genomic and transgenic DNA-repeat sequences (microsatellites) by inactivation of AtMSH2 mismatch-repair function. Plant Physiol., 133, No. 1, pp. 328-338. https://doi.org/10.1104/pp.103.023952

25. Lister, R., O'Malley, R., Tonti-Filippini, J., Gregory, B., Berry, C., Millar, A. & Ecker, J. (2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, 133, pp. 523-536. https://doi.org/10.1016/j.cell.2008.03.029

26. Lu, B.R. & Snow, A.A. (2005). Gene flow from genetically modified rice and its environmental consequences. BioSci., 55, pp. 669-678. https://doi.org/10.1641/0006-3568(2005)055[0669:GFFGMR]2.0.CO;2

27. Matzke, A. & Matzke, M. (1998). Position effects and epigenetic silencing of plant transgenes. Curr. Opin. Plant Biol., 1, pp. 142-148. https://doi.org/10.1016/S1369-5266(98)80016-2

28. Matzke, M.A., Mette, M.F. & Matzke, A.J.M. (2000). Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol. Biol., 43, pp. 401-415. https://doi.org/10.1023/A:1006484806925

29. Muller, K., Heller, H. & Doerfier, W. (2001). Foreign DNA integration. Genome-wide perturbations of methylation and transcription in the recipient genome. J. Biol. Chem., 276, pp. 14271-14278. https://doi.org/10.1074/jbc.M009380200

30. Pasquali, M., Dematheis, F., Gullino, M. & Garibaldi, A. (2007). Identification of Race 1 of Eusarium oxysporum f. sp. lactucae on lettuce by inter-retrotransposon sequence-characterized amplified region technique. Phytopathology, 97, No. 8, pp. 987-996. https://doi.org/10.1094/PHYTO-97-8-0987

31. Todorovska, E.(2007). Retrotransposons and their role in plant-genome evolution. Biotechnology and Biotechnological Equipment, No. 21, pp. 294-305. https://doi.org/10.1080/13102818.2007.10817464

32. Trebichalsky, A., Kalendar, R., Schulman, A., Stratula, O., Galova, Z., Balazova, Z. & Chnapec, M. (2013). Detection of genetic relationships among spring and winter triticale (Triticosecale Witt.) and rye cultivars (Secale cereale L.) by using retrotransposon-based markers. Czech. J. Genet. Plant Breed., 49, pp. 171-174. https://doi.org/10.17221/56/2013-CJGPB

33. Vicient, C.M. (2010). Transcriptional activity of transposable elements in maize. BMC Genomics, 11, No. 601, pp. 1-10. https://doi.org/10.1186/1471-2164-11-601

34. Wu, R., Guo, W., Wang, X., Wang, XL., Zhuang, T., Clarke, J. & Liu, B. (2009). Unintended consequence of plant transformation: biolistic transformation caused transpositional activation of an endogenous retrotransposon Tos17 in rice ssp. japonica cv. Matsumae. Plant Cell Rep., 28, No. 7, pp. 1043-1051. https://doi.org/10.1007/s00299-009-0704-4