Повний текст та додаткові матеріали
У вільному доступі: PDFЦитована література
1. Merchant, S.S., Prochnik, S.E., Vallon. O., ... , Rokhsar, D.S. & Grossman, A.R. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318(5848), pp. 245-250. https://doi.org/10.1126/science.1143609
2. Stepanov, S.S. & Zolotareva, E.K. (2015). Methanol-induced stimulation of growth, intracellular amino acids, and protein content in Chlamydomonas reinhardtii. J. Appl. Phycol., 27 (4), pp. 1509-1516. https://doi.org/10.1007/s10811-014-0445-9
3. Stepanov, S.S. & Zolotareva, E.K. (2011). The effect of methanol on the photosynthetic activity and productivity of Chlamydomonas reinhardtii Dang. (Chlorophyta). Int. J. Algae, 21 (2), pp. 178-190 [in Russian].
4. du Jardin, P. (2015). Plant biostimulants: definition, concept, main categories and regulation. Scient. Horticult., 196, pp. 3-14. https://doi.org/10.1016/j.scienta.2015.09.021
5. Berestovitskaya, V.M., Tyurenkov, I.N., Vasilyeva, O.S., Perfilova, V.N., Ostroglyadov, E.S. & Bagmetova, V.V. (2016). Racetams: Synthesis Methods and Biological Activity. SPb .: Asterion [in Russian].
6. Peuvot, J., Schanck, A., Deleers, M. & Brasseur, R. (1995). Piracetam-induced changes to membrane physical-properties - a combined approach by P-31 nuclear-magnetic-resonance and conformational-analysis. Biochem. Pharmacol., 50, pp. 1129-1134. https://doi.org/10.1016/0006-2952(95)00225-O
7. Muller, W., Eckert, G. & Eckert, A. (1999). Piracetam: Novelty in a unique mode of action. Pharmacopsych., 32 (S 1), pp. 2-9. https://doi.org/10.1055/s-2007-979230
8. Hitzenberger, G., Rameis, H. & Manigley, C. (1998). Pharmacological properties of piracetam. CNS drugs., 9 (Suppl 1), p. 19. https://doi.org/10.2165/00023210-199809001-00003
9. Mikulic, P. & Beardall, J. (2014). Contrasting ecotoxicity effects of zinc on growth and photosynthesis in a neutrophilic alga (Chlamydomonas reinhardtii) and an extremophilic alga (Cyanidium caldarium). Chemosphere, 112, pp. 402-411. https://doi.org/10.1016/j.chemosphere.2014.04.049
10. Jamers, A., Blust, R., De Coen, W., Griffin, J. L. & Jones, O.A. (2013). Copper toxicity in the microalga Chlamydomonas reinhardtii: an integrated approach. Biometals, 26 (5), pp. 731-740. https://doi.org/10.1007/s10534-013-9648-9
11. Tamburic, B., Zemichael, F.W., Maitland, G.C. & Hellgardt, K. (2011). Parameters affecting the growth and hydrogen production of the green alga Chlamydomonas reinhardtii. Int. J. Hydrog. Ener., 36(13), pp. 7872-7876. https://doi.org/10.1016/j.ijhydene.2010.11.074
12. Butler, W.L. (1978). Energy distribution in the photochemical apparatus of photosynthesis. Annu. Rev. Plant Physiol., 29, pp. 345-378. https://doi.org/10.1146/annurev.pp.29.060178.002021
13. Schreiber, U., Schliwa, U. & Bilger, W. (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res., 10, pp. 51-62. https://doi.org/10.1007/BF00024185
14. Genty, B. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Photosynth. Res., 990, pp. 87-92. https://doi.org/10.1016/S0304-4165(89)80016-9
15. Maxwell, K. & Johnson, G.N.J. (2000). Chlorophyll fluorescence-a practical guide. Exp. Bot., 51, pp. 659-668. https://doi.org/10.1093/jexbot/51.345.659
16. Bilger, W. & Bjorkman, O. (1990). Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res., 25 (3), pp. 173-185. https://doi.org/10.1007/BF00033159
17. Andersen, R.A. (2005). Algal Culturing Techniques. Acad. Press. Inc. - Burlington, MA: Elsevier Academic Press.
18. Zelensky, M.I. (1986). Polarographic determination of oxygen in studies on photosynthesis and respiration. Leningrad: Nauka [in Russian].