Фізіологія рослин і генетика 2017, том 49, № 6, 482-494, doi: https://doi.org/10.15407/frg2017.06.482

ШЛЯХИ ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ ФОСФОРНОГО ЖИВЛЕННЯ РОСЛИН

Грабчук С.М., Михальська Л.М., Швартау В.В.

  • Інститут фізіології рослин і генетики Національної академії наук України 03022 Київ, вул. Васильківська, 31/17

Фосфор — важливий макроелемент для рослин, нестача якого в ґрунті істотно лімітує отримання високих урожаїв. Гомеостаз фосфору в рослинах підтримують складні комплексні системи поглинання, транспортування та ремобілізації ортофосфату. Сигнальні системи на рівні кореня, пагона—кореня базипетального й акропетального спрямування включають градієнт Рі, зміни гормонального статусу, мікроРНК, мРНК, цукри, координують реакцію на дефіцит Рі на рівні рослини. Серед шляхів підвищення ефективності використання фосфору (Р-use efficiency — PUE) найперспективнішими є біотехнологічні підходи. За допомогою вектора перетворення фосфіту на фосфат створено генетично модифіковані рослини кукурудзи, сої, бавовнику, здатні використовувати фосфіт як добриво. Результати молекулярних досліджень фосфорного живлення культурних рослин уможливили створення генотипів рослин і техно­логій їх вирощування з високими рівнями PUE, що істотно підвищує економічну ефективність рослинництва та знижує хімічне навантаження на агрофітоценози.

Ключові слова: фосфорне живлення, фосфіт, ортофосфат

Фізіологія рослин і генетика
2017, том 49, № 6, 482-494

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Bary, A.A., Atambaeva, Sh.A. & Orazova, S.B. (2011). Micro RNK under stress in plants. Bulletin of the Kazakh National University.Biolohiia, 4(50), pp. 34-37 [in Russian].

2. Goncharova, Yu.K. & Harytonov, E.M. (2015). Genetic control of traits associated with the absorption of phosphorus in rice varieties (Oryza sativa L.). Vavilov Journal of Genetics and Breeding, 19(2), pp. 197-204 [in Russian].

3. Grabchuk SM, Schwartau VV Application of phosphite in phosphorus plant nutrition. Materials of XI Allukr. sci. pract. conf. "Biotechnology of the twenty-first century". Kyiv, p. 21.

4. Morgun, V.V., Shvartau, V.V. & Kiriziy, D.A. (2010). Physiological basis of the formation of high productivity of cereals. Fiziologiya i biokhimiya kult. Rastenij, 42(5), pp. 371-393 [in Russian].

5. Morgun, V.V. (Ed.) (2007). Application of plant physiology in wheat breeding. K: Lohos [in Russian].

6. Shvartau, V.V., Gulyaev, B.I. & Karlova, A.B. (2009). Features of the reaction of plants to phosphorus deficiency. Fiziologiya i biokhimiya kult. Rastenij, 41(3), pp. 208-220 [in Russian].

7. Shvartau, V.V., Zozulya, O.L., Mihalska, L.M. & Sanin O.Yu. (2016). Fusariosis of cultivated plants. K: Lohos [in Ukrainian].

8. Balyan, H.S., Gahlaut, V., & Kumar, A. Nitrogen and phosphorus use efficiencies in wheat: physiology, phenotyping, genetics, and breeding. Ed. J. Janick (2016). Plant breeding reviews, 40. Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9781119279723.ch4

9. Blair, M.W. Breeding approaches to increasing nutrient-use efficiency: examples from common beans. Ed Zed Rengel. (2013). Improving water and nutrient-use efficiency in food production systems. Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9781118517994.ch10

10. Bovill, W.D., Huang, C.Y. & McDonald G.K. (2013). Genetic approaches to enhancing phosphorus-use efficiency (PUE) in crops: challenges and directions. Crop. Pasture Sci., No. 64, pp. 179-198. https://doi.org/10.1071/CP13135

11. Bunemann, E., Oberson, A., & Frossard, E. (2011). Phosphorus in action — biological processes in soil phosphorus cycling. Soil Biology. Berlin Heidelberg: Springer-Verlag.26. (p. 483) https://doi.org/10.1007/978-3-642-15271-9

12. Dhillon, J., Torres, G., Driver, E., Figueiredo, B. & R. Raun W. (2017). World phosphorus use efficiency in cereal crops. Agr. J., 109(4), pp. 1670-1677. https://doi.org/10.2134/agronj2016.08.0483

13. Hammond J.P., Broadley M.R. & White P.J. (2004). Genetic responses to phosphorus deficiency. Ann. Bot., 94(3), pp. 323-332. https://doi.org/10.1093/aob/mch156

14. Hasan, Md. M., Hasan, Md. M., Teixeira da Silva J.A. & Licorresponding X. (2016). Regulation of phosphorus uptake and utilization: molecular advances to practical strategies. Cell. Mol. Biol. Lett., 21(7).

15. Hermans, C., Hammond, J.P., White, P.J. Verbruggen, N. (2006). How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci., No. 11(12), pp. 610-617.

16. Heuer S., Gaxiola R., Schilling R., Herrera-Estralla, L., Lopez-Arredondo, D., Wissuwa, M., Delhaize, E.& Rouached, H. (2017). Improving phosphorus use efficiency: a complex trait with emerging opportunities. Plant J., 90(5). pp. 868-885. https://doi.org/10.1111/tpj.13423

17. Lopez-Arredondo, D.L. & Herrera-Estrella, L. (2012). Engineering phosphorus metabolism in plants to produce a dual fertilization and weed control system. Nature Biotech., No. 30(9), pp. 889-895. https://doi.org/10.1038/nbt.2346

18. Lopez-Arredondo, D.L. & Herrera-Estrella, L. (2013). A novel dominant selectable system for the selection of transgenic plants under in vitro and greenhouse conditions based on phosphite metabolism. Plant Biotechnol. J., 11, pp. 516-525. https://doi.org/10.1111/pbi.12063

19. Lopez-Arredondo, D., Leyya-Gonzalez, M.A., Gonzalez-Morales, S.I., Lopez-Bucio, J & Herrera-Estrella, L. (2014). Phosphate nutrition: improving low-phosphate tolerance in crops. Annu. Rev. Plant Biol., No. 65, pp. 95-123. https://doi.org/10.1146/annurev-arplant-050213-035949

20. Lun F., Liu J., Ciais P., Nesme, T., Chang, J., Wang, R., Goll, D., Sardans, J., Penuelas, J. & Obersteiner, M. (2017). Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth System Science Data Discuss, pp. 1-45. doi: https://doi.org/10.5194/essd-2017—41, in review, 2017. https://doi.org/10.5194/essd-2017-41

21. Ma, X., Li, C. & Wang, M. (2015). Wheat NF-YA10 functions independently in salinity and drought stress. Bioengineered, 6:4, pp. 245-247. https://doi.org/10.1080/21655979.2015.1054085

22. McDonald, G., Bovill, W., Taylor, J. & Wheeler R. (2015). Responses to phosphorus among wheat genotypes. Crop. Pasture Sci., No. 66, pp. 430-444. https://doi.org/10.1071/CP14191

23. Moreta, D.E., Mathur, P.N., van Zonneveld, M., Amava, K.,Arango, J., Selvarai, M.G. & Dedicova, B. (2015). Current issues in cereal crop biodiversity. Adv. Biochem. Biotechnol., 147, pp. 1—35.

24. Nahampun, H.N., Lopez-Arredondo, D., Xu, X., Herrera-Estrella, L. & Wanq.K. (2016). Assessment of ptxD gene as an alternative selectable marker for Agrobacterium-mediated maize transformation. Plant Cell Rep., 35(5), pp.1121-1132. https://doi.org/10.1007/s00299-016-1942-x

25. Neset, T.-S.S., Cordell, D. & Andersson, L. (2013). The flow of phosphorus in food production and consumption systems. In: Improving water and nutrient-use efficiency in food production systems. Ed. Zed Rengel. Hoboken, NJ: John Wiley & Sons, p. 79-91. https://doi.org/10.1002/9781118517994.ch5

26.Neto, A.P., Favarin, J.L., Hammond, J.P. (2016). Analysis of phosphorus use efficiency traits in Coffea genotynes reveals Coffea arabica and Coffea canephora have contrasting phosphorus uptale and utilization efficiencies. Front. Plant Sci., No 7 (408).

27. Nisan, A., Khan, S.U. & Shah A.H. (2016). Screening and evaluation of wheat germplasm for phosphorus use efficiency. Iran J. Sci. Technol. Trans. Sci., 40, pp. 201-207. https://doi.org/10.1007/s40995-016-0085-9

28. Poirier, Y. & Jung, J.-Y. Phosphate transporters. Ed. W.C. Plaxton, H. Lambers. (2015). Annual Plant Reviews. Phosphorus metabolism in plants. Hoboken, NJ: John Wiley & Sons, 48, pp. 125—158. https://doi.org/10.1002/9781118958841.ch5

29. Qu, B., He, X., Wang, J., Zhao, Y., Teng, W., Shao, A., Zhao,X., Ma, W., Wang, J., Li, B., Li, Z. & Tong, Y. (2015). Wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input. Plant Physiol., 167(2), pp. 411-423. https://doi.org/10.1104/pp.114.246959

30. Quraishi, U.M., Abrouk, M., Murat, F., Pont, C., Foucrier, S., Desmaizieres, G., Confolent, C., Riviere, N., Charmet, G., Paux, F., Muriqneux, A., Guerreiro, L., Lafarge, S., Le Gouis, J., Feuillet, C. & Salse, J. (2011). Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution. Plant J., No. 65, pp. 745-756. https://doi.org/10.1111/j.1365-313X.2010.04461.x

31. Raghothama, K.G. & Karthikeyan, A.S. (2005). Phosphate acquisition. Plant Soil., 274:37. https://doi.org/10.1007/s11104-004-2005-6

32. Ryan, P.R., Liao M., Delhaize, E., Rebetzke, J.G., Weligama,C., Spielmeyer, W. & James, A.R. (2015). Early vigour improves phosphate uptake in wheat. J. Exp. Bot., 66(22), pp. 7089-7100. https://doi.org/10.1093/jxb/erv403

33. Shabnam, R. & Iqbal, M.T. (2016). Phosphorus use efficiency by wheat plants that grown in an acidic soil. Brazillian Journal of Science and Technology, 3:18. doi: https://doi.org/10.1186/s40552-016—0030—7. https://doi.org/10.1186/s40552-016-0030-7

34. Smith, A.P., Fontenot, E.B., Zahraeifard, S. & DiTusa S.F. (2015). Molecular components that drive phosphorus remobilisation during leaf senescence. In ed. W.C. Plaxton, H. Lambers. Annual Plant Reviews. Phosphorus metabolism in plants. Hoboken, NJ: John Wiley & Sons, 48, pp. 159-186. https://doi.org/10.1002/9781118958841.ch6

35. Suzuki, M., Takahashi, M., Tsukamoto, T., Watanabe, S., Matsuhasi, S., Yazaki, J., Kishimoto, N., Kikuchi, S., Nakanishi, H., Mori, S. & Nishizawa, NK. (2006). Biosynthesis and secretion of mugineic acid family photosiderophores in zinc-deficient barley. Plant J., 48(1), pp. 85-97. https://doi.org/10.1111/j.1365-313X.2006.02853.x

36. Tian, J. & Liao, H. (2015). The role of intracellular and secreted purple acid phosphatases in plant phosphorus scavenging and recycling. In: W.C. Plaxton, H. Lambers, editors. Annual Plant Reviews. Phosphorus metabolism in plants. Hoboken, NJ: John Wiley & Sons, 48, pp. 265-288. https://doi.org/10.1002/9781118958841.ch10

37. Van de Wiel, C.C.M., van der Linden, C.G. & Scholten O.E. (2016). Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica, 207(1), pp. 1-22. https://doi.org/10.1007/s10681-015-1572-3

38. White, A.K. & Metcalf, W.W. (2007). Microbial metabolism of reduced phosphorus compounds. Annu. Rev. Microbiol., No. 61, pp. 379-400. https://doi.org/10.1146/annurev.micro.61.080706.093357

39. White, P.J.& Veneklaas, E.J. (2012). Nature and nurture: the importance of seed phosphorus content. Plant Soil, No. 357, pp. 1-8. https://doi.org/10.1007/s11104-012-1128-4

40. Wu, H., Gao, L., Yuan, Z. & Wang, S. (2016). Life cycle assessment of phosphorus use efficiency in crop production system of three crops in Chaohu Watershed, China. Journal of Cleaner Production, 139, pp. 1298-1307. https://doi.org/10.1016/j.jclepro.2016.08.137

41. Yaseen, M., Aziz, M.Z., Manzoor, A. & Naweed, M. (2017). Promoting growth, yield and phosphorus use efficiency of crops in maize-wheat cropping system by using polymer coated diammonium phosphate. Communications in Soil Science and Plant Analysis. (pp. 646-655). https://doi.org/10.1080/00103624.2017.1282510

42. Yan, H.M., Bkackwell, M., McGrath, S. & George, T.S. (2016). Morphological responses of wheat (Triticum aestivum L.) roots to phosphorus supply in two contrasting soils. Journal of Agricultural Science, 154, pp.9-108. https://doi.org/10.1017/S0021859615000702

43. Yuan, Y., Guo, K. & Dong B. (2016). A study on phosphorus use efficiency of wheat. Asian Agricult. Res., 8(5)., pp.80-87.

44. Zhang, H. & Wang, H. (2014). QTL mapping for traits related to P-deficient tolerance using three related RIL populations in wheat. Euphytica, 203(3), pp. 505-520. https://doi.org/10.1007/s10681-014-1248-4

45. Zhang, Z., Liao, H. & Lucas, W.J.(2014). Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants .J. Integr. Plant Biol., 56, pp. 192-220. https://doi.org/10.1111/jipb.12163