Фізіологія рослин і генетика 2025, том 57, № 1, 3-17, doi: https://doi.org/10.15407/frg2025.01.003

Вплив забруднення свинцем на рiст, розвиток і метаболiзм культурних злакiв: захисна роль салiцилової кислоти

Косаківська I.В., Щербатюк М.М.

  • Iнститут ботаніки ім. М.Г. Холодного Національної академії наук України 01004, Київ, вул. Терещенківська, 2

Культурні злаки є головним джерелом продовольства у світі. Вони забезпечують більше половини загальної потреби людства в калоріях. Для вирішення проблеми продовольчої безпеки необхідно забезпечити стабільне постачан­ня якісного зерна. Забруднення ґрунтів свинцем (Pb) є значним викликом для довгострокового виробництва зернових. В Україні ця проблема набула особливої гостроти через інтенсивні бойові дії. Свинець, як неесенціальний важкий метал, спричиняє комплексний токсичний вплив на рослинний організм через три основні молекулярні механізми: накопичення активних форм кисню, блокування ключових функціональних груп у біомолекулах та витіснення іонів біологічно важливих металів. Дослідження показали, що свинець істотно пригнічує проростання насіння й ріст проростків злаків, причому інтенсивність впливу залежить від концентрації, тривалості експозиції та видових особливостей рослин. За високого вмісту в середовищі Pb, проростання зернівок знижується на 30—40 %, довжина коренів зменшується на 45 %, значно падає індекс стресостійкості. На клітинному рівні Pb порушує структуру і функції фотосистем, спричиняє оксидативний стрес, відбувається дестабілізація мембран, втрачається цілісність клітинних органел. Саліцилова кислота (СК) — фітогормон фенольної природи — відіграє ключову роль у регуляції численних фізіологічних процесів рослин, включно ріст і розвиток, фотосинтез, дихання, транспірація, та забезпечує формування захисних реакцій, підвищуючи стійкість злаків до широкого спектра абіотичних і біотичних стресорів. Особливу роль СК відіграє у формуванні стійкості злаків до забруднення Pb через її участь у передачі стресових сигналів, механізмах антиоксидантного захисту й модуляції фізіологічних процесів. У цьому огляді ми представили сучасне узагальнення існуючих даних щодо впливу токсичності Pb на морфофізіологічні та біохімічні реакції основних зернових культур. Також висвітлюються дані про механізми поглинання й транслокацію іонів свинцю в рослинах, критично обговорюються можливі стратегії фіторемедіації ґрунтів та шляхи подолання загрози токсичності свинцю у зернових культур.

Ключові слова: зернові культури, забруднення свинцем, саліцилова кислота, ріст, метаболізм, стійкість

Фізіологія рослин і генетика
2025, том 57, № 1, 3-17

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Kosakivska, I.V., Vasyuk, V.A., Voytenko, L.V. & Shcherbatiuk, M.M. (2022). Plant hormonal system under heavy metal stress. Kyiv: M. G. Kholodny Institute of Botany https://www.botany.kiev.ua/doc/hormonal_monograph_2022.pdf [in Ukrainian].

2. Rahman, S., Hussain, Y. Li, S., Hussain, B., Khan, W.D., Riaz, L., Ashraf, M.N., Khaliq, M.A., Du, Z. & Cheng, H. (2023). Role of phytohormones in heavy metal tolerance in plants: A review Ecol. Indic., 146, 109844. https://doi.org/10.1016/j.ecolind.2022.109844

3. Xiong, T., Leveque, T., Shahid, M., Foucault, Y., Momboand, S. & Dumat, C. (2014). Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by Process Ultrafine Particles. J. Environ. Qual. 43 (5), pp. 1593-600. https://doi.org/10.2134/jeq2013.11.0469

4. Pierart, A., Shahid, M., Sѕjalon-Delmas, N. & Dumat, C. 2015. Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J. Hazard. Mater., 289, pp. 219-234. https://doi.org/10.1016/j.jhazmat.2015.02.011

5. Sharma, P. & Dubey, R. S. (2005). Lead toxicity in plants. Braz. J. Plant Physiol., 17 (1), pp. 35-52. https://doi.org/10.1590/S1677-04202005000100004

6. Hadi, F. & Aziz, T. (2015). A mini review on lead (Pb) toxicity in plants. J. Biol. Life Sci., 6 (2), pp. 91-101. https://doi.org/10.5296/jbls.v6i2.7152

7. Scott, D.C. & Berti, W.R. (1993). Remediation of Contaminated Soils with Green Plants: An Overview. In Vitro Cell. Dev. Biol. - Plant, 29 (4), pp. 207-212. https://doi.org/10.1007/BF02632036

8. Ashraf, A., Bhardwaj, S., Ishtiaq, H., Devi, Y. K. & Kapoor, D. (2021). Lead uptake, toxicity and mitigation strategies in plants. Plant Arch., 21 (1), pp. 712-721. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.099

9. Dong, D., Zhao, X., Hua, X., Liu, J. & Gao, M. (2009). Investigation of the potential mobility of Pb, Cd and Cr (VI) from moderately contaminated farmland soil to groundwater in Northeast, China. J. Hazard. Mater., 162, pp. 1261-1268. https://doi.org/10.1016/j.jhazmat.2008.06.032

10. Saleem, M.F., Asghar, H.N., Zahir, Z.A. & Shahid, M. (2019). Evaluation of lead tolerant plant growth promoting rhizobacteria for plant growth and phytoremediation in lead contamination. Rev. Int. Contam. Ambient., 35 (4), pp. 999-1009. https://doi.org/10.20937/RICA.2019.35.04.18

11. Vasilachi, I.C., Stoleru, V. & Gavrilescu, M. (2023). Analysis of Heavy Metal Impacts on Cereal Crop Growth and Development in Contaminated Soils. Agriculture, 13, 1983. https://doi.org/10.3390/agriculture13101983

12. WHO/FAO (2016). General Standards for Contaminants and Toxins in Food and Feed. Rome: Food and Agriculture Organization.

13. Ahmad, I., Tahir, M., Daraz, U., Ditta, A., Hussain, M. B. & Khan, Z. U. H. (2020). Res­ponses and tolerance of cereal crops to metal and metalloid toxicity. In M. Hasanuzzaman (Ed.), Agronomic Crops (pp. 235-264). Singapore: Springer. https://doi.org/10.1007/978-981-15-0025-1_14

14. Zanganeh, R., Jamei, R. & Rahmani, F. (2020). Response of maize plant to sodium hydrosulfide pretreatment under lead stress conditions at early stages of growth. Cereal Res. Commun., 49, pp. 267-276. https://doi.org/10.1007/s42976-020-00095-0

15. Leal, W., Eustachio, J., Fedoruk, M. & Lisovska, T. 2024. War in Ukraine: an overview of environmental impacts and consequences for human health. Front. Sustain. Resour. Manag. 3, 1423444. https://doi.org/10.3389/fsrma.2024.1423444

16. Solokha, M., Pereira, P., Symochko, L., Vynokurova, N., Demyanyuk, O., Sementsova, K., Inacio, M. & Barcelo, D. (2023). Russian-Ukrainian war impacts on the environment. Evidence from the field on soil properties and remote sensing. Sci. Total Environ., 902, 166122. https://doi.org/10.1016/j.scitotenv.2023.166122

17. Sethy, S. K. & Ghosh, S. (2013). Effect of heavy metals on germination of seeds. J. Nat. Sci. Biol. Med., 4(2), pp. 272-275. https://doi.org/10.4103/0976-9668.116964

18. Pourrut, B., Shahid, M., Dumat, C., Winterton, P. & Pinelli, ‹. (2011). Lead Uptake, Toxicity, and Detoxification in Plants. In: D. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology (pp. 113-136). New York: Springer. https://doi.org/10.1007/978-1-4419-9860-6_4

19. Gul, I., Manzoor, M., Silvestre,J., Rizwan, M., Hina, K., Kallerhoff, J. & Arshad, M. (2018). EDTA-assisted phytoextraction of lead and cadmium by Pelargonium cultivars grown on spiked soil. Int. J. Phytoremediation, 21 (2). pp. 101-110. https://doi.org/10.1080/15226514.2018.1474441

20. Islam, E., Yang, X., Li, T., Liu, D., Jin, X. & Meng, F. (2007). Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J. Hazard. Mater., 147 (3), pp. 806-816. https://doi.org/10.1016/j.jhazmat.2007.01.117

21. Nolan, A., Zhang, H. & McLaughlin, M.J. (2005). Prediction of Zinc, Cadmium, Lead, and Copper Availability to Wheat in Contaminated Soils Using Chemical Speciation, Diffusive Gradients in Thin Films, Extraction, and Isotopic Dilution Techniques. J. Environ. Qual., 34 (2), pp. 496-507. https://doi.org/10.2134/jeq2005.0496

22. Kanwal, A., Farhan, M., Sharif, F., Hayyat, M. U., Shahzad, L. & Ghafoor, G.Z. (2020). Effect of industrial wastewater on wheat germination, growth, yield, nutrients and bioaccumulation of lead. Sci. Rep., 10, pp. 1-9. https://doi.org/10.1038/s41598-020-68208-7

23. Yang, Y., Wei, X., Lu, J., You, J., Wang, W. & Shi, R. (2010). Lead-induced phytotoxicity mechanism involved in seed germination and seedling growth of wheat (Triticum aestivum L.). Ecotoxicol. Environ. Saf., 73, pp. 1982-1987. https://doi.org/10.1016/j.ecoenv.2010.08.041

24. Li, C., Feng, S., Shao, Y., Jiang, L., Lu, X. & Hou, X. (2007). Effects of arsenic on seed germination and physiological activities of wheat seedlings. J. Environ. Sci., 19 (6), pp. 725-732. https://doi.org/10.1016/S1001-0742(07)60121-1

25. Yourtchi, M. S. & Bayat, H. Y. (2013). Effect of cadmium toxicity on growth, cadmium accumulation and macronutrient content of durum wheat (Dena CV). Int. J. Agric. Crop Sci., 15(6), pp. 1099-1103.

26. Ghani, A., Shah, A. U. & Akhtar, U. (2010). Effect of lead toxicity on growth, chlorophyll and lead (Pb). Pak. J. Nutri., 9, pp. 887-891. https://doi.org/10.3923/pjn.2010.887.891

27. Lavado, R. S., Porcelli, C. A. & Alvarez, R. (2001). Nutrient and heavy metal concentration and distribution in maize, soybean and wheat as affected by different tillage systems in Argentine Pampas. Soil Tillage Res. 62, pp. 55-60. https://doi.org/10.1016/S0167-1987(01)00216-1

28. He, Y., Jiang, R., & Hou, X. (2023). Responses of maize germination, root morphology and leaf trait to characteristics of lead pollution: a case study. Int. J. Coal Sci. Technol., 10 (12). https://doi.org/10.1007/s40789-023-00565-w

29. Gupta, M., Dwivedi, V., Kumar, S., Patel, A., Niazi, P. & Yadav, V.K. (2024). Lead toxicity in plants: mechanistic insights into toxicity, physiological responses of plants and mitigation strategies. Plant Signal. Behav., 19 (1), 2365576. https://doi.org/10.1080/15592324.2024.2365576

30. Liu, J.G., Li, K.Q., Xu, J.K. & Zhang, Z.J. (2003). Lead toxicity, uptake and translocation in different rice cultivars. Plant Sci., 165, pp. 793-802. https://doi.org/10.1016/S0168-9452(03)00273-5

31. Munzuroglu, O. & Geckil, H. (2002). Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch. Environ. Contam. Toxicol., 43, pp. 203-213. https://doi.org/10.1007/s00244-002-1116-4

32. Pirzadah, T.B., Malik, B., Tahir, I., Hakeem, K.R., Alharby, H.F. & Rehman, R.U. (2020). Lead toxicity alters the antioxidant defense machinery and modulate the biomarkers in Tartary buckwheat plants. Int. Biodeterior. Biodegrad., 151, 104992. https://doi.org/10.1016/j.ibiod.2020.104992

33. Phaniendra, A., Jestadi, D. B. & Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem., 30 (1), pp. 11-26. https://doi.org/10.1007/s12291-014-0446-0

34. Gupta, D.K., Nicoloso, F.T., Schetinger, M.R.C., Rossato, L.V., Pereira, L. B., Castro, G., Srivastava Y. & Tripathi, R.D. (2009). Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J. Hazard. Mater., 172 (1), pp. 479-484. https://doi.org/10.1016/j.jhazmat.2009.06.141

35. Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M. & Anjum, M.Z. (2019). Lead toxicity in plants: Impacts and remediation. J. Environ. Manage., 250, 109557. https://doi.org/10.1016/j.jenvman.2019.109557

36. Hussain, A., Abbas, N., Arshad, F.M., Akram, M., Khan, Z. I., Ahmad, K., Mansha, M. & Mirzaei, F. (2013). Effects of diverse doses of lead (Pb) on different growth attributes of Zea mays L. Agricul. Sci., 4 (5), pp. 262-265. https://doi.org/10.4236/as.2013.45037

37. McComb, J., Hentz, S., Miller, G., Begonia, M. & Begonia, G.B. (2012). Effects of lead on plant growth, lead accumulation and phytochelatin contents of hydroponically-grown Sesbania exaltata. World Environ., 2 (3), pp. 38-43. https://doi.org/10.5923/j.env.20120203.04

38. Ali, B., Mwamba, T.M., Gill, R.A., Yang, C., Ali, S., Daud, M.K., Wu, Y. & Zhou, W. (2014). Improvement of element uptake and antioxidative defense in Brassica napus under lead stress by application of hydrogen sulfide. Plant Growth Regul., 74, pp. 261-273. https://doi.org/10.1007/s10725-014-9917-9

39. Hu, X., Khan, I., Jiao, Q., Zada, A. & Jia, T. (2021). Chlorophyllase, a Common Plant Hydrolase Enzyme with a Long History, Is Still a Puzzle. Genes, 12, 1871. https://doi.org/10.3390/genes12121871

40. Navabpour, S., Yamchi, A., Bagherikia, S. & Kafi, H. (2020). Lead-induced oxidative stress and role of antioxidant defense in wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants, 26, pp. 793-802. https://doi.org/10.1007/s12298-020-00777-3

41. Lima-Melo, Y., KПlПc, M., Aro, E.M. & Gollan, P.J. (2021). Photosystem I Inhibition, Protection and Signalling: Knowns and Unknowns. Front. Plant Sci., 12, 791124. https://doi.org/10.3389/fpls.2021.791124

42. Aslam, M., Aslam, A., Sheraz, M., Ali, B., Ulhassan, Z., Najeeb, U., Zhou, W. & Gill, R.A. (2021). Lead Toxicity in Cereals: Mechanistic Insight into Toxicity, Mode of Action, and Management. Front. Plant Sci., 11, 587785. https://doi.org/10.3389/fpls.2020.587785

43. Zeng, L.S., Liao, M., Chen, C.L. & Huang, C.Y. (2007). Effects of lead contamination on soil microbial activity and physiological indices in soil-lead-rice (Oryza sativa L.) system. Ecotoxicol. Environ. Saf., 67 (1), pp. 67-74. https://doi.org/10.1016/j.ecoenv.2006.05.001

44. Ashraf, U., Kanu, A.S., Deng, Q., Mo, Z., Pan, S., Tian, H. & Tang, X. (2017). Lead (Pb) Toxicity; Physio-Biochemical Mechanisms, Grain Yield, Quality, and Pb Distribution Proportions in Scented Rice. Front. Plant Sci., 8, 259. https://doi.org/10.3389/fpls.2017.00259

45. Kosakivska, I.V., Voytenko, L.V., Vasyuk, V.A. & Shcherbatiuk, M.M. (2019). Effect of zinc on growth and phytohormones accumulation in Triticum aestivum L. priming with abscisic acid. Rep. Natl. Acad. Sci. Ukr., 11, pp. 93-99. https://doi.org/10.15407/dopovidi2019.11.093

46. Kosakivska, I.V., Babenko, L.M., Romanenko, K.O., Korotka, I.Y. & Potters, G. (2021). Molecular mechanisms of plant adaptive responses to heavy metals stress. Cell Biol. Int., 45 (2), pp. 258-272. https://doi.org/10.1002/cbin.11503

47. Saltveit, M.E., (2017). Synthesis and metabolism of phenolic compounds. In E.M. Yahia (Ed.), Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd Edition (pp. 115-124), John Wiley & Sons https://doi.org/10.1002/9781119158042.ch5

48. Roychoudhury, A., Ghosh, S., Paul, S., Mazumdar, S., Das, G. & Das, S. 2016. Pre-treatment of seeds with salicylic acid attenuates cadmium chloride-induced oxidative damages in the seedlings of mungbean (Vigna radiata L. Wilczek). Acta Physiol. Plant., 38, 11. https://doi.org/10.1007/s11738-015-2027-0

49. Lorenzo, O. & Solano, R. (2005). Molecular players regulating the jasmonate signalling network. Curr. Opin. Plant Biol., 8 (5), pp. 532-540. https://doi.org/10.1016/j.pbi.2005.07.003

50. Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki , K., & Shinozaki, K. (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol., pp. 436-442. https://doi.org/10.1016/j.pbi.2006.05.014

51. Vicente, M.R. & Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. J. Exp. Bot., 62 (10), pp. 3321-3338. https://doi.org/10.1093/jxb/err031

52. Kadioplu, A., Saruhan, N., Saplam, A., Terzi, R. & Acet, T. (2010). Exogenous salicylic acid alleviates effects of long-term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regul., 64 (1), pp. 27-37. https://doi.org/10.1007/s10725-010-9532-3

53. P«l, M., Janda, T., Majl«th, I. & Szalai, G. (2020). Involvement of salicylic acid and other phenolic compounds in light-dependent cold acclimation in maize. Int. J. Mol. Sci., 21 (6), 1942. https://doi.org/10.3390/ijms21061942

54. Pйerostov«, S., Dobrev, P.I., Knirsch, V., Jaroлov«, J., Gaudinov«, A., Zupkova, B., Pr«лil, I., Janda, T., Brzobohatъ, B., Skal«k, J. & Vankov«, R. (2021). Light quality and intensity modulate cold acclimation in Arabidopsis. Int. J. Mol. Sci., 22 (5), 2736. https://doi.org/10.3390/ijms22052736

55. Gтlser, F. & SШnmez, F. (2022). Effects of Mycorrhizae and Salicylic Acid on Growth, Cadmium Content and Uptake of Maize (Zea mays L.) Seedlings in Cadmium Contaminated Media. Ulus. Tar. Yaban Hay. Bilim. Derg., 8 (1), pp. 133-141. https://doi.org/10.24180/ijaws.1011361

56. Afrousheh, M., Shoor, M., Tehranifar, A. & Safari, V.R. (2015). Phytoremediation potential of copper contaminated soils in Calendula officinalis and effect of salicylic acid on the growth and copper toxicity. Int. Lett. Chem. Phys. Astron., 50, pp. 159-168. https://doi.org/10.18052/www.scipress.com/ILCPA.50.159

57. Ma, Y., He, Y., Deng, P., Zhang, S., Ding, Y., Zhang, Z., Zhang, B-Q., An, J-X., Wang, Y-R. & Liu, Y. (2023). Repurposing salicylamides to combat phytopathogenic bacteria and induce plant defense responses. Chem. Biodivers., 20 (11), e202300998. https://doi.org/10.1002/cbdv.202300998

58. Kohli, S.K., Handa, N. & Kaur, R. (2017). Role of Salicylic Acid in Heavy Metal Stress Tolerance: Insight into Underlying Mechanism. In: R. Nazar, N. Iqbal & N. Khan (Eds.), Salicylic Acid: A Multifaceted Hormone (pp. 123-144). Springer, Singapore. https://doi.org/10.1007/978-981-10-6068-7_7

59. Ahmad, I., Basra, S.M. & Wahid, A. (2014). Exogenous application of ascorbic acid, salicylic acid and hydrogen peroxide improves the productivity of hybrid maize at low temperature stress. Int. J. Agric. Biol., 16, pp. 825-830. https://doi.org/10.5897/AJB11.2266

60. Ruan, S., Xue, Q. & Tylkowska, K. (2002). The influence of priming on germination of rice (Oryza sativa L.) seeds and seedling emergence and performance in flooded soil. Seed Sci. Technol., 30, 6167.

61. Szalai, G., P«l, M., Ђrend«s, T. & Janda, T. (2016). Priming seed with salicylic acid increases grain yield and modifies polyamine levels in maize. Cereal Res. Commun., 44 (5), pp. 537-548. https://doi.org/10.1556/0806.44.2016.038

62. Emamverdian, A., Ding, Y. & Mokhberdoran, F., 2020. The role of salicylic acid and gibberellin signaling in plant responses to abiotic stress with an emphasis on heavy metals. Plant Signal. Behav., 15 (7), 1777372. https://doi.org/10.1080/15592324.2020.1777372

63. Horv«th, E., Szalai, G. & Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. J. Plant Growth Regul., 26 (3), pp. 290-300. https://doi.org/10.1007/s00344-007-9017-4

64. Borsani, O., Valpuesta, V. & Botella, M.A., 2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol., 126(3), pp. 1024-1030. https://doi.org/10.1104/pp.126.3.1024

65. Cunningham, S.D. & Berti, W.R. 1993. Remediation of contaminated soils with green plants: An overview. In Vitro Cell. Dev. Biol. - Plant, 29, pp. 207-212. https://doi.org/10.1007/BF02632036

66. Katoh, M., Hashimoto, K. & Sato, T. (2016). Lead and antimony removal from contaminated soil by phytoremediation combined with an immobilization material. Clean - Soil Air Water, 44 (12), pp. 1717-1724. https://doi.org/10.1002/clen.201500162

67. Yadav, K. K., Gupta, N., Kumar, A., Reece, L. M., Singh, N., Rezania, S. & Khan S.A. (2018). Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol. Eng., 120, pp. 274-298. https://doi.org/10.1016/j.ecoleng.2018.05.039

68. Malar, S. K. & Saradha, M. (2020). Strategies for phytoremediation of soil contaminated with lead using alternanthera sessilis. Int. J. Curr. Res. Biosci. Plant Biol., 7 (5), pp. 46-50. https://doi.org/10.20546/ijcrbp.2020.705.007

69. Tong, H. (2023). Phytoextraction of lead in contaminated soil - a collaboration between introductory analytical chemistry and campus farm. J. Chem. Educ., 100 (10), pp. 4013-4019. https://doi.org/10.1021/acs.jchemed.3c00382

70. Mei, X., Wang, Y., Li, Z., Larousse, M., Pѕrѕ, A., Rocha, M., Zhan., F., He, Y., Pu, L., PanabiAres., F. & Zu, Y. (2021). Root-associated microbiota drive phytoremediation strategies to lead of Sonchus asper (L.) hill as revealed by intercropping-induced modifications of the rhizosphere microbiome. Environ. Sci. Pollut. Res., 29 (16), pp. 23026-23040. https://doi.org/10.1007/s11356-021-17353-1

71. He, L., Han, X., Qiu, W., Xu, D., Wang, Y., Yu, M., Xianqi, H. & Zhuo, R. (2019). Identification and expression analysis of the gdsl esterase/lipase family genes, and the characterization of saglip8 in Sedum alfredii hance under cadmium stress. Peerj, 7, e6741. https://doi.org/10.7717/peerj.6741

72. MaYecka, A., Konkolewska, A., HaXє, A., BaraYkiewicz, D., Ciszewska, L., Ratajczak, E., Staszak, A.M., Kmita, H. & Jarmuszkiewicz, W. (2019). Insight into the phytoremediation capability of Brassica juncea (v. Malopolska): metal accumulation and antioxidant enzyme activity. Int. J. Mol. Sci., 20 (18), 4355. https://doi.org/10.3390/ijms20184355

73. Tamura, H., Honda, M., Sato, T. & Kamachi, H. (2005). Pb hyperaccumulation and tolerance in common buckwheat (Fagopyrum esculentum Moench). J. Plant Res., 118 (5), pp. 355-359. https://doi.org/10.1007/s10265-005-0229-z

74. Anguilano, L., Onwukwe, U., Dekhli, A., Venditti, S., Aryani, D. & Reynolds, A. (2022). Hyperaccumulation of lead using Agrostis tenuis. Environmental Systems Research, 11 (1). https://doi.org/10.1186/s40068-022-00279-z

75. Mellem, J., Baijnath, H. & Odhav, B. (2012). Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. Afr. J. Agric. Res., 7 (4), pp. 591-596. https://doi.org/10.5897/AJAR11.1486

76. Reeves, R. & Brooks, R. (1983). Hyperaccumulation of lead and zinc by two metallophytes from a mining area in central Europe. Environ. Pollut., 31 (4), pp. 277-285. https://doi.org/10.1016/0143-1471(83)90064-8

77. Cunningham, S.D. & Ow, D.W. (1996). Promises and prospects of phytoremediation. Plant Physiol., 110, pp. 715-719. https://doi.org/10.1104/pp.110.3.715

78. Sharma, N., Gardea-Torresdey, J., Parsons, J. & Sahi, S. (2004). Chemical speciation and cellular deposition of lead in Sesbania drummondii. Environ. Toxicol. Chem., 23 (9), pp. 2068-2073. https://doi.org/10.1897/03-540

79. S«nchez-Galv«n, G., Monroy, O., GЩmez, J. & OlguHn, E. (2008). Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water Air Soil Pollut., 194 (1-4), pp. 77-90. https://doi.org/10.1007/s11270-008-9700-5

80. S«nchez-Galv«n, G. & OlguHn, E.G. (2009). A holistic approach to phytofiltration of heavy metals: recent advances in rhizofiltration, constructed wetlands, lagoons, and bioadsorbentbased systems. In L.K. Wang, Y.T. Hung & N.K. Shammas (Eds.), Handbook of Advanced Industrial and Hazardous Wastes Treatment (pp. 389-407). Boca Raton: CRC Press. https://doi.org/10.1201/9781420072228

81. Kucharski, R., Sas-Nowosielska, A., MaYkowski, E., Japenga, J., Kuperberg, J., Pogrzeba, M. & Krzyza, J. (2005). The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant Soil, 273, pp. 291-305. https://doi.org/10.1007/s11104-004-8068-6

82. Szarek-˜ukaszewska, G., & Grodzinska, K. (2007). Vegetation of a post-mining open pit (Zn/Pb ores): Three-year study of colonization. Pol. J. Ecol., 55 (2), pp. 261-282.

83. Chehregani, A. & Malayeri, B.E. (2007). Removal of heavy metals by native accumulator plants. Int. J. Agric. Biol., 9, pp. 462-465.