Наведено огляд літературних і власних даних з питань ролі ґрунтових мікроорганізмів у забезпеченні здоров’я ґрунтів агроценозів, продукційному процесі сільськогосподарських культур, формуванні й стійкості агроекосистем. Обґрунтовано значення мікробної ґрунтової біомаси в процесах розкладання рослинних залишків, відмерлих мікроорганізмів і ґрунтової органічної речовини, акумуляції потенційно доступних для рослин поживних речовин. Показники біомаси ґрунту та функціональної активності мікроорганізмів можуть бути використані для ранньої діагностики якості ґрунтів. Проаналізовано значення мікроорганізмів, що стимулюють ріст і розвиток рослин (PGPМ — plant growth-promoting rhizobacteria), та біопрепаратів, створених на їх основі, для покращення отримання рослинами поживних речовин, забезпечення фітогормонами, пригнічення шкідників і збудників захворювань рослин, змін у фізіології рослин та імунній системі, регулюванні впливу біотичного й абіотичного стресів. Показано можливість керованого компостування органічної речовини за створення умов домінування агрономічно цінних мікроорганізмів у компостованих субстратах, що забезпечує високі якісні показники кінцевого продукту. Визначено можливі напрями досліджень біологічних процесів, оптимізація яких здатна покращити стан ґрунтів агроценозів та продукційний процес сільськогосподарських культур. Аналіз ролі мікроорганізмів у стабілізації землеробства свідчить про широкий діапазон їх впливу на перебіг низки біологічних процесів, здатних оптимізувати живлення рослин, їхню стійкість до ураження шкідниками й збудниками захворювань. Значення біологічних добрив і біофунгіцидів у технологіях вирощування сільськогосподарських культур зростатиме як з погляду екологічної привабливості для прийняття окремих рішень, так і забезпечення людства якісними продуктами харчування. Використання показників змін мікробної ґрунтової біомаси та функціонального прояву мікроорганізмів у відповідь на дію сільськогосподарських технологічних чинників може використовуватись для ранньої діагностики якості ґрунтів.
Ключові слова: ґрунтова мікробна біомаса, агрономічно цінні мікроорганізми, PGPM, біодобрива, біофунгіциди, компостування
Повний текст та додаткові матеріали
У вільному доступі: PDFЦитована література
1. Adesemoye, A.O. & Kloepper, J.W. (2009). Plant-microbes interactions in enhanced fertilizer-use efficiency. Microbiol. Biotechnol., 85, pp. 1-12. https://doi.org/10.1007/s00253-009-2196-0
2. Yu, C., Huang, X., Chen, H., Godfray, H.C.J., Wright, J.S., Hall, J.W., Gong, P., Ni, S., Qiao, S., Huang, G., Xiao, Y., Zhang, J., Feng, Z., Ju, X., Ciais, P., Stenseth, N.C., Hessen, D.O., Sun, Z., Yu, L., Cai, W., Fu, H., Huang, X., Zhang, C., Liu, H. & Taylor, J. (2019). Managing nitrogen to restore water quality in China. Nature, 567, pp. 516-520. https://doi.org/10.1038/s41586-019-1001-1
3. Sud, M. (2020). Managing the biodiversity impacts of fertiliser and pesticide use: Overview and insights from trends and policies across selected OECD countries. Paris: OECD Publishing. https://doi.org/10.1787/19970900
4. Pachauri, R.K. & Meyer, L.A. (Eds.). (2014). Climate change 2014. Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland: IPCC.
5. Majeed, A., Muhammad, Z., Islam, S., Ullah, Z. & Ullah, R. (2017). Cyanobacterial application as biofertilizers in rice fields: role in growth promotion and crop productivity. PSM Microbiol., 2 (2), pp. 47-50.
6. Sa, J.C.M., Lal, R., Cerri, C.C., Lorenz, K., Hungria, M. & de Faccio Carvalho, P.C. (2017). Low-carbon agriculture in South America to mitigate global climate change and advance food security. Environ. Int., 98, pp. 102-112. https://doi.org/10.1016/j.envint.2016.10.020
7. Arora, N.K., Fatima, T., Mishra, I. & Verma, S. (2020). Microbe-based inoculants: role in next green revolution. In: Shukla, V., Kumar, N. (eds). Environmental Concerns and Sustainable Development (pp. 191-246). Singapore: Springer. https://doi.org/10.1007/978-981-13-6358-0_9
8. McKenney, E.A., Koelle, K., Dunn, R.R. & Yoder, A.D. (2018). The ecosystem services of animal microbiomes. Mol. Ecol., 27, pp. 2164-2172. https://doi.org/10.1111/mec.14532
9. Doran, J.W., Sarrantonio, M. & Liebig, M.A. (1996). Soil health and sustainability. Advances in Agronomy, 56, pp. 1-54. https://doi.org/10.1016/S0065-2113(08)60178-9
10. Singh, R., Rani, A., Kumar, P., Shukla, G. & Kumar, A. (2017). Cellulolytic activity in microorganisms. Bull. Pure Appl. Sci., 36 (1), pp. 28-37. https://doi.org/10.5958/2320-3196.2017.00004.0
11. Brookes, P.C., Powlson, D.S. & Jenkinson, D.S. (1982). Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem., 14, pp. 319-329. https://doi.org/10.1016/0038-0717(82)90001-3
12. Angers, D.A., Bissonnette, N., Legere, A. & Samson, N. (1993). Microbial and biochemical changes induced by rotation and tillage in a soil under barley production. Can. J. Soil. Sci., 73, pp. 39-50. https://doi.org/10.4141/cjss93-004
13. Stockdale, E.A. & Murphy, D.V. (2017). Managing soil microbial biomass for sustainable agro-ecosystems. In Tate, K.R. Microbial biomass. A paradigm shift in terrestrial biogeochemistry (pp. 67-101). London: World Scientific. https://doi.org/10.1142/9781786341310_0003
14. Jenkinson, D.S. (1977). The soil microbial biomass. New Zealand Soil News, 25, pp. 213-218.
15. Brookes, P. (2001). The soil microbial biomass: concept, measurement and applications in soil ecosystem research. Microbes Environ., 16 (3), pp. 131-140. https://doi.org/10.1264/jsme2.2001.131
16. Smith, J.L. & Paul, E.A. (1990). The significance of soil microbial biomass estimations. In Bollag, J.M., Stotzky, G. (Eds.). Soil Biochemistry, Vol. 6 (pp. 357-396). New York: Marcel Dekker. https://doi.org/10.1201/9780203739389-7
17. Jenkinson, D.S. & Rayner, J.H. (1977). The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci., 123, pp. 298-305. https://doi.org/10.1097/00010694-197705000-00005
18. Jenkinson, D.S. & Parry, L.C. (1989). The nitrogen cycle in the Broadbalk Wheat Experiment: a model for the turnover of nitro-gen through the soil microbial biomass. Soil Biol. Biochem., 21, pp. 535-541. https://doi.org/10.1016/0038-0717(89)90127-2
19. Jenkinson, D.S. & Ladd, J.N. (1981). Microbial biomass in soil: measurement and turnover. In Paul, E.A., Ladd, J.N. (Eds.). Soil Biochemistry, Vol. 5 (pp. 415-471). New York: Marcel Dekker.
20. Ayanaba, A., Tuchwell, S.B. & Jenkinson, D.S. (1976). The effect of clearing and cropping on the organic reserves and biomass of tropical forest soils. Soil Biol. Biochem., 8, pp. 519-525. https://doi.org/10.1016/0038-0717(76)90095-X
21. Adams, T.McM. & Laughlin, R.J. (1981). The effects of agronomy on the carbon and nitrogen contained in the soil bio-mass. J. Agric. Sci., 97, pp. 319-327. https://doi.org/10.1017/S0021859600040740
22. Powlson, D.S. & Jenkinson, D.S. (1976). The effects of biocidal treatments on metabolism in soil. II. Gamma irradiating autoclaving, air-drying and fumigation. Soil Biol. Biochem., 8, pp. 179-188. https://doi.org/10.1016/0038-0717(76)90002-X
23. Saffigna, P.G., Powlson, D.S., Brookes, P.C. & Thomass, G.A. (1989). Influence of tillage and sorghum residues on soil organic matter and soil microbial biomass in an Australian vertisol. Soil Biol. Biochem., 21, pp. 759-765. https://doi.org/10.1016/0038-0717(89)90167-3
24. Wardle, D.A. (1992). A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev., 67, pp. 321-358. https://doi.org/10.1111/j.1469-185X.1992.tb00728.x
25. Insam, H. (2001). Developments in soil microbiology since the mid 1960s. Geoderma, 100, pp. 389-402. https://doi.org/10.1016/S0016-7061(01)00029-5
26. Schloter, M., Dilly, O. & Munch, J.C. (2003). Indicators for evaluating soil quality. Agric. Ecosyst. Environ., 98, pp. 255-262. https://doi.org/10.1016/S0167-8809(03)00085-9
27. Bending, G.D., Turner, M.K., Rayns, F., Marx, M.-C. & Wood, M. (2004). Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol. Biochem., 36, pp. 1785-1792. https://doi.org/10.1016/j.soilbio.2004.04.035
28. Carter, M.R., Gregorich, E.G., Angers, D.A., Beare, M.H., Sparling, G.P., Wardle, D.A. & Voroney, R.P. (1999). Interpretation of microbial biomass measurements for soil quality assessment in humid temperate regions. Can. J. Soil Sci., 79, pp. 507-520. https://doi.org/10.4141/S99-012
29. Nielsen, M.N. & Winding, A. (2002). Microorganisms as indicators of soil health. National Environmental Research Institute, Denmark. NERI Technical Report, No 388.
30. Winding, A., Hund-Rinke, K. & Rutgers, M. (2005). The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicol. Environ. Saf., 62, pp. 230-248. https://doi.org/10.1016/j.ecoenv.2005.03.026
31. Volkohon, V., Pyrig, O., Volkohon, K. & Dimova, S. (2019). Methodological aspects of determining the trend of organic matter mineralization«synthesis processes in croplands. Agricult. Sci. Pract., 6 (1), pp. 3-8. https://doi.org/10.15407/agrisp6.01.003
32. Volkogon, V., Pyrig, O., Dimova, S. & Volkogon, K. (2020). Focus of mineralization-synthesis processes of the organic matter in the leached chernozem while cultivating potatoes on different fertilization backgrounds. Agricult. Sci. Pract., 7 (1), pp. 40-47. https://doi.org/10.15407/agrisp7.01.040
33. Kloepper, J.W. & Schroth, M.N. (1979). Plant growth promoting rhizobacteria on radishes. Proceedings of the 4th international conference on plant pathogenic bacteria (pp. 879-882), Angers, France.
34. Kloepper, J., Leong, J., Teintze, M. & Schroth, M.N. (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 286, pp. 885-886. https://doi.org/10.1038/286885a0
35. Beneduzi, A., Ambrosini, A. & Passaglia, L.M.P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol., 35, pp. 1044-1051. https://doi.org/10.1590/S1415-47572012000600020
36. Ma, Y. (2019). Biotechnological potential of plant-microbe interactions in environmental decontamination. Front. Plant Sci., 10, 1519, https://doi.org/10.3389/fpls.2019.01519
37. Volpiano, C.G., Lisboa, B.B., Sao Jose, J.F.B., Beneduzi, A. & Granada, C.E. (2022). Soil-plant-microbiota interactions to enhance plant growth. Rev. Bras. Cienc. Solo., 46, e0210098. https://doi.org/10.36783/18069657rbcs20210098
38. Volkogon, V.V., Nadkernychna, O.V., Kovalevska, T.M., Tokmakova, L.M., Kopylov, E.P., Kozar, S.F., Tolkachov, M.Z., Melnychuk, T.M., Chaykovska, L.O., Sherstoboev, M.K., Moskalenko, A.M. & Khalep, Yu.M. (2006). Microbial preparations in agriculture: theory and practice. Kyiv: Ahrarna nauka [in Ukrainian].
39. Calvo, P., Nelson, L. & Kloeper, J.W. (2014). Agricultural uses of plant biostiumulants. Plant Soil., 383, 3. https://doi.org/10.1007/s11104-014-2131-8
40. Singh, B.K. & Trivedi, P. (2017). Microbiome and the future for food and nutrient security. Microb. Biotechnol., 10, pp. 50-53. https://doi.org/10.1111/1751-7915.12592
41. Lopes, M.J.D.S., Dias-Filho, M.B. & Gurgel, E.S.C. (2021). Successful plant growth-promoting microbes: inoculation methods and abiotic factors. Front Sustain. Food Syst., 5, 606454. https://doi.org/10.3389/fsufs.2021.606454
42. Vessey, J.K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant Soil., 255, pp. 571-586. https://doi.org/10.1023/A:1026037216893
43. Zahir, A.A., Arshad, M. & Frankenberger, W.T. (2004). Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv. Agron., 81, pp. 97-168. https://doi.org/10.1016/S0065-2113(03)81003-9
44. Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S. & Crecchio, C. (2015). Microbial interactions in the rhizosphere: beneficial influences of plant growth promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils., 51, pp. 403-415. https://doi.org/10.1007/s00374-015-0996-1
45. Trivedi, P., Leach, J.E., Tringe, S.G., Sa, T. & Singh, B.K. (2020). Plant-microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol., 18, pp. 607-621. https://doi.org/10.1038/s41579-020-0412-1
46. Glick, B.R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo), 963401. https://doi.org/10.6064/2012/963401
47. Lin, W., Okon, Y. & Hardy, R.W.R.F. (1983). Enhauced mineral uptake by Zea mays and Sorgum bicolor roots inoculated with Azospirillum brasilense. Appl. Environ. Microbiol., 45 (6), pp. 1775-1779. https://doi.org/10.1128/aem.45.6.1775-1779.1983
48. Okon, Y., Bloemberg, G.V. & Lugtenberg, B.J.J. (1998). Biotechnology of biofertilization and phytostimulation. In Altman, A. (Ed.). Agricult. Biotechnol. (pp. 327-349). New York: Marcel Dekker. https://doi.org/10.1201/9781420049275.pt2a
49. Santos, M.S., Nogueira, M.A. & Hungria, M. (2019). Microbial inoculants: reviewing the past, discussing the present, and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Expr., 9, 205. https://doi.org/10.1186/s13568-019-0932-0
50. Zilli, J.E., Pacheco, R.S., Gianluppi, V., Smiderle, O.J., Urquiaga, S. & Hungria, M. (2021). Biological N2 fixation and yield performance of soybean inoculated with Bradyrhizobium. Nutr. Cycl. Agroecosyst. 119, pp. 323-336. https://doi.org/10.1007/s10705-021-10128-7
51. Patyka, V.P., Kots, S.Ya., Volkohon, V.V., Sherstoboeva, O.V., Melnychuk, T.M., Kalinichenko, A.V. & Hrynyk, I.V. (2003). Biological Nitrogen. V.P. Patyka (Ed.). Kyiv: Svit [in Ukrainian].
52. Volkogon, V.V., Berdnikov, O.M. & Lopushnyak, V.I. (2019). Ecological aspects of the fertilizer system of crops. V.V. Volkogon (Ed.). Kyiv: Agrarna Nauka [in Ukrainian].
53. Dobereiner, J., Day, J.M. & Dart, P.J. (1972). Nitrogenase activity and oxygen sensitivity of the Paspalum notatum-Azotobacter paspali association. J. Gen. Microbiol., 71 (1), pp. 103-116. https://doi.org/10.1099/00221287-71-1-103
54. Dommergues, Y., Balandreau, J., Rinaudo, G. & Weinchard, P. (1973). Non-symbiotic nitrogen fixation in the rhizosphere of rice, maize and different tropical grasses. Soil. Biol. Biochem., 5 (1), pp. 83-89. https://doi.org/10.1016/0038-0717(73)90094-1
55. Okon, Y., Heytler, P.G. & Hardy, R.W.F. (1983). N2-fixation by Azospirillum brasilense and incorporation into host Setarica italica. Appl. Environ. Microbiol., 46 (3), pp. 694-697. https://doi.org/10.1128/aem.46.3.694-697.1983
56. Maltseva, N.N. & Volkogon, V.V. (1984) Azospirillum lipoferum (Beijerinck), a nitrogen-fixing bacterium in soil rhizosphere and rhizoplane of farm plants. Mikrobiol. Zh., 46 (1), pp. 6-8 [in Russian].
57. Bashan, Y. & de-Bashan, L.E. (2010). How the plant growth-promoting bacterium Azospirillum promotes plant growth - a critical assessment. Adv. Agron., 108, pp. 77-136. https://doi.org/10.1016/S0065-2113(10)08002-8
58. Hungria, M., Campo, R.J., Souza, E.M. & Pedrosa, F.O. (2010). Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil., 331, pp. 413-425. https://doi.org/10.1007/s11104-009-0262-0
59. Fukami, J., Nogueira, M.A., Araujo, R.S. & Hungria, M. (2016). Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express., 6, 3. https://doi.org/10.1186/s13568-015-0171-y
60. Pereg, L., Luz, E. & Bashan, Y. (2016). Assessment of affinity and specificity of Azospirillum for plants. Plant Soil., 399, pp. 389-414. https://doi.org/10.1007/s11104-015-2778-9
61. Murty, M.G. & Ladha, J.K. (1998). Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponic conditions. Plant Soil., 108 (2), pp. 281-285. https://doi.org/10.1007/BF02375660
62. Volkohon, V.V. (2006). Microbial preparations as the factor of increase of mineral fertilizers assimilability by plants. Silskohosp. mikrobiol., 4, pp. 21-30 [in Ukrainian]. https://doi.org/10.35868/1997-3004.4.21-30
63. Ardakani, M. & Mafakheri, S. (2011). Designing a sustainable agroecosystem for wheat (Triticum aestivum L.) production. J. Appl. Environ. Biol. Sci., 1, pp. 401-413.
64. Cassan, F., Coniglio, A., Lopez, G., Cassan, F., Molina, R., Nievas, S., de Carlan, C.L.N., Donadio, F., Torres, D., Rosas, S., Pedrosa, F.O., de Souza, E., Zorita, M.D., de-Bashan, L. & Mora, V. (2020). Everything you must know about Azospirillum and its impact on agriculture and beyond. Biol. Fertil. Soils, 56, pp. 461-479. https://doi.org/10.1007/s00374-020-01463-y
65. Santos, M.S., Nogueira, M.A. & Hungria, M. (2021). Outstanding impact of Azospirillum brasilense strains Ab-V5 and Ab-V6 on the Brazilian agriculture: lessons that farmers are receptive to adopt new microbial inoculants. Rev. Bras. CiГnc. Solo., 45, e0200128. https://doi.org/10.36783/18069657rbcs20200128
66. Gyaneshwar, P., Naresh Kumar, G., Parekh, L.J. & Poole, P.S. (2002). Role of soil microorganisms in improving P nutrition of plants. Plant Soil., 245, pp. 83-93. https://doi.org/10.1023/A:1020663916259
67. Mehnaz, S. & Lazarovits, G. (2006). Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb. Ecol., 51, pp. 326-335. https://doi.org/10.1007/s00248-006-9039-7
68. Babalola, O.O. (2010). Beneficial bacteria of agricultural importance. Biotechnol. Lett., 32, pp. 1559-1570. https://doi.org/10.1007/s10529-010-0347-0
69. Iutinskaya, G.A., Ponomarenko, S.P., Andreyuk, E.I., Antipchuk, A.F., Babayats, O.V., Belyavskaya, L.A., Brovko, I.S., Valagurova, E.V., Galkin, A. P., Galkina, L.A., Gladun, A.A., Gritsaenko, Z.M., Dragovoz, I.V., Ikin, D., Kozyritskaya, V.E. & Kryuchkova, L.A. (2010). Bioregulation of microbial-plant systems. K.: Nichlava [in Russian].
70. Kurdish, I.K. (2010). Introduction of microorganisms in agroecosystems. K.: Naukova Dumka [in Ukrainian].
71. Bhattacharyya, P.N. & Jha, D.K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol., 28, pp. 1327-50. https://doi.org/10.1007/s11274-011-0979-9
72. Belyavskaya, L.A., Kozyritskaya, V.E., Valagurova, E.V. & Iutinskaya, G.A. (2012). Biologically active substances of the preparation Averkom. Mikrobiol. Zh., 74 (3), pp. 10-15 [in Russian].
73. Biliavska, L.O., Kozyritska, V.E., Kolomiets, Yu.V. & Babich, A.G. (2015). Phytoprotective and growth-regulatory properties of metabolic bioformulations on the base of soil streptomycetes. Dopov. Nac. akad. nauk Ukr., 1, pp. 131-137 [in Ukrainian]. https://doi.org/10.15407/dopovidi2015.01.131
74. Nosko, B. (2017). Modern problems of phosphorus in farming agriculture and ways of their solution. Visnyk agrarnoi nauky, 6, pp. 5-12 [in Ukrainian]. https://doi.org/10.31073/agrovisnyk201706-01
75. Igual, J.M., Valverde, A., Cervantes, E. & Velazquez, E. (2001). Phosphate solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie, 21, pp. 561-568 https://doi.org/10.1051/agro:2001145
76. Schachtman, D.P., Reid, R.J. & Ayling, S.M. (1998). Phosphorus uptake by plants: from soil to cell. Plant Physiol., 116, pp. 447-453. https://doi.org/10.1104/pp.116.2.447
77. Rodriguez, H. & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv., 17, pp. 319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
78. Khan, M.S., Zaidi, A., Ahemad, M., Oves, M. & Wani, P.A. (2010). Plant growth promotion by phosphate solubilizing fungi - current perspective. Arch. Agron. Soil Sci., 26, pp. 73-98. https://doi.org/10.1080/03650340902806469
79. Sawers, R.J.H., Svane, S.F., Quan, C., Gronlund, M., Wozniak, B., Gebreselassie, M.N., Gonzalez-Munoz, E., Chavez Montes, R.A., Baxter, I., Goudet, J., Jakobsen, I., & Paszkowski, U. (2017). Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytol., 214, pp. 632-643. https://doi.org/10.1111/nph.14403
80. Rodriguez, H., Fraga, R., Gonzalez, T. & Bashan, Y. (2006). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil., 287, pp. 15-21. https://doi.org/10.1007/s11104-006-9056-9
81. Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E. & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol., 64, pp. 807-838. https://doi.org/10.1146/annurev-arplant-050312-120106
82. Tomasi, N., Weisskopf, L., Renella, G., Landi, L., Pinton, R., Varanini, Z., Nannipieri, P., Torrent, J., Martinoia, E. & Cesco, S. (2008). Flavonoids of white lupin roots participate in phosphorus mobilization from soil. Soil Biol. Biochem., 40, pp. 1971-1974. https://doi.org/10.1016/j.soilbio.2008.02.017
83. Marschner, P., Crowley, D. & Rengel, Z. (2011). Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis-model and research methods. Soil Biol Biochem., 43, pp. 883-894. https://doi.org/10.1016/j.soilbio.2011.01.005
84. Mimmo, T., Del Buono, D., Terzano, R., Tomasi, N., Vigani, G., Crecchio, C., Pinton, R., Zocchi, G. & Cesco, S. (2014). Rhizospheric organic compounds in the soil-microorganism-plant system: their role in iron availability. Eur. J. Soil Sci., 65, pp. 629-642. https://doi.org/10.1111/ejss.12158
85. Meena, V.S., Maurya, B.R. & Verma, J.P. (2014). Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol. Res., 169 (5-6), pp. 337-347. https://doi.org/10.1016/j.micres.2013.09.003
86. Bashan, Y., Levanony, H. & Mitiku, G. (1989). Changes in proton efflux of intact wheat roots induced by Azospirillum brasilense Cd. Can. J. Microbiol., 35, pp. 691-697. https://doi.org/10.1139/m89-113
87. Bertrand H., Plassard C., Pinochet X., Touraine, B., Normand, P. & Cleyet-Marel, J.C. (2000). Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can. J. Microbiol., 46, pp. 229-236. https://doi.org/10.1139/w99-137
88. White, P.J. (2003). Ion transport. In Thomas, B., Murphy, D.J. & Murray, B.G. (Eds.). Encyclopedia of applied plant sciences (pp. 625-634), London: Acad. Press. https://doi.org/10.1016/B0-12-227050-9/00104-6
89. Oger, P.M., Mansouri, H., Nesme, X. & Dessaux, Y. (2004). Engineering root exudation of Lotus toward the production of two novel carbon compounds leads to the selection of distinct microbial populations in the rhizosphere. Microb. Ecol., 47, pp. 96-103. https://doi.org/10.1007/s00248-003-2012-9
90. Blagodatskaya, E., Littschwager, J., Laurer, M. & Kuzyakov, Y. (2010). Growth rates of rhizosphere microorganisms depend on competitive abilities of plants and N supply. Plant Biosyst., 144, pp. 408-413. https://doi.org/10.1080/11263501003718596
91. Hu J., Yang T., Friman V.P., Kowalchuk, G.A., Hautier, Y., Li, M., Wei, Z., Xu, Y., Shen, Q. & Jousset, A. (2021). Introduction of probiotic bacterial consortia promotes plant growth via impacts on the resident rhizosphere microbiome. Proc. R. Soc. B., 288, 20211396. https://doi.org/10.1098/rspb.2021.1396
92. Jacoud, C., Faure, D., Wadoux, P. & Bally, R. (1998). Development of a strain-specific probe to follow inoculated Azospirillum lipoferum CRT1 under field conditions and enhancement of maize root development by inoculation. FEMS Microb. Ecol., 27 (1), pp. 43-51. doi: 10.1111/j.1574-6941.1998.tb00524.x https://doi.org/10.1111/j.1574-6941.1998.tb00524.x
93. Dobbelaere, S., Croonenborghs, A., Thys, A., Ptacek, D., Vanderleyden, J., Dutto, P., Labandera-Gonzalez, C., Caballero-Mellado, J., Aguirre, J. F., Kapulnik, Y., Brener, S., Burdman, S., Kadouri, D., Sarig, S., & Okon, Y. (2001). Responses of agronomically important crops to inoculation with Azospirillum. Aust. J. Plant Physiol., 28 (9), pp. 871-879. https://doi.org/10.1071/PP01074
94. El Zemrany, H., Cortet, J., Lutz, M.P., Chabert, A., Baudoin, E., Haurat, J., Maughan, N., Felix, D., Defago, G., Bally, R. & Moenne-Loccoz, Y. (2006). Field survival of the phytostimulator Azospirillum lipoferum CRT1 and functional impact on maize crop, biodegradation of crop residues, and soil faunal indicators in a context of decreasing nitrogen fertilisation. Soil Biol. Biochem., 38, pp. 1712-1726. https://doi.org/10.1016/j.soilbio.2005.11.025
95. Berdnikov, O.M., Volkogon, V.V., Miroshnychenko, M.M., Hrynyk, O.I. & Potapenko, L.V. (2020). The importance of lysimetric studies in the ecological and agrochemical assessment of agricultural technologies. Agroecol. J., 1, pp. 58-70 [in Ukrainian]. https://doi.org/10.33730/2077-4893.1.2020.201271
96. Volkogon, V.V. (2007). Microbiological aspects of nitrogen fertilization optimization of agricultural crops. Kyiv: Agrarna Nauka [in Ukrainian].
97. Volkogon, V. (2013). Biological nitrogen transformation. Palmarium Academic publishing [in Russian].
98. Volkogon, V.V. (2006). Methodological aspects of determining environmentally appropriate doses of mineral nitrogen in agriculture. AgroChemistry Soil Sci., 3, pp. 17-19 [in Ukrainian].
99. Ozturk, A., Caglar, O. & Sahin, F. (2003). Yield response of wheat and barley to inoculation of plant growth promoting rhizobacteria at various levels of nitrogen fertilization. J. Plant Nutr. Soil Sci., 166 (2), pp. 262-266. https://doi.org/10.1002/jpln.200390038
100. Shaharooma, B., Naveed, M., Arshad, M., & Zahir, Z.A. (2008). Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl. Microbiol. Biotechnol., 79, pp. 147-155. https://doi.org/10.1007/s00253-008-1419-0
101. Volkohon, V., Dimova, S., Volkohon, K. & Sydorenko V. (2020). The efficiency of microbial preparations in different systems of fertilizing crops. Visnyk agrarnoi nauky, 6, pp. 5-13. https://doi.org/10.31073/agrovisnyk202006-01
102. Sydorenko, V.P., Volkohon, V.V., Dimova, S.B., Volkohon, K.I., Lutsenko, N.L., Shtanko, N.P. & Zemska I.A. (2020). Efficiency of pre-sowing inoculation in cultivation of agricultural crops under different organic agrarian backgrounds. Silskohosp. mikrobiol., 32, pp. 18-34. https://doi.org/10.35868/1997-3004.32.18-34
103. Volkogon, V.V., Dimova, S.B., Volkogon, K.I., Sidorenko, V.P. & Volkogon, M.V. (2021). Biological Nitrogen fixation and denitrification in rhizosphere of potato plants in response to the fertilization and inoculation. Front. Sustain. Food Syst., 5, 606379. https://doi.org/10.3389/fsufs.2021.606379
104. Santa, O.R.D., Santa, H.S.D., Fernandes, R., Michela, G., Ronzelli, P. & Soccol, C.R. (2008). Influence of Azospirillum sp. inoculation in wheat, barley and oats. Ambiencia, 4 (2), pp. 197-207.
105. Adesemoye, A.O., Torbert, H.A. & Kloepper, J.W. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb. Ecol., 58 (4), pp. 921-929. https://doi.org/10.1007/s00248-009-9531-y
106. Yasari, E., Azadgoleh, M.A., Mozafari, S. & Alashti, M.R. (2009). Enhancement of growth and nutrient uptake of Rapeseed (Brassica napus L.) by applying mineral nutrients and biofertilizers. Pak. J. Biol. Sci., 12, pp. 127-133. https://doi.org/10.3923/pjbs.2009.127.133
107. Hungria, M., Campo, R.J., Souza, E.M. & Pedrosa, F.O. (2010). Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil, 331, pp. 413-425. https://doi.org/10.1007/s11104-009-0262-0
108. Alabouvette, C. & Couteadier, Y. (1992). Biological control of plant diseases: progress and challenges for the future. In Tjamos, E.C., Papavizas G.C., Cook R.J. (Eds.). Biological Control of Plant Diseases (pp. 415-426). New York: Plenum Press.
109. Mohiddin, F.A., Khan, M.R., Khan, S.M. & Bhat, B.H. (2010). Why Trichoderma is considered super hero (super Fungus) Against the evil parasites? Plant Pathol. J., 9, pp. 92-102. https://doi.org/10.3923/ppj.2010.92.102
110. Anees, M., Tronsmo, A., Edel-Hermann, V., Gautheron, N., Faloya, V. & Steinberg, C. (2010). Biotic changes in relation to local decrease in soil conduciveness to disease caused by Rhizoctonia solani. Eur. J. Plant Pathol., 126, pp. 29-41. https://doi.org/10.1007/s10658-009-9517-0
111. Klein, E., Katan, J. & Gamliel, A. (2011). Soil suppressiveness to Fusarium disease following organic amendments and solarization. Plant Dis., 95, pp. 1116-1123. https://doi.org/10.1094/PDIS-01-11-0065
112. Garbeva, P., van Veen, J.A. & van Elsas, J.D. (2004). Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol., 42, pp. 243-270. https://doi.org/10.1146/annurev.phyto.42.012604.135455
113. Lisboa, B.B., Bayer, C., Passaglia, L.M.P., Camargo, F.A.O., Beneduzi, A., Ambrosini., A. & Vargas, L.K. (2015). Soil fungistasis against Fusarium graminearum under different crop management systems. Rev. Bras. Cienc. Solo, 39, pp. 69-77. https://doi.org/10.1590/01000683rbcs20150683
114. Campos, S.B., Lisboa, B.B., Camargo, F.A.O., Sczyrba, A., Dirksen, P., Albersmeier, A., Kalinowski, J., Beneduzi, A., Costa, P.B., Passaglia, L.M.P., Vargas, L.K. & Wendisch, V.F. (2016). Soil suppressiveness and its relations with the microbial community in a Brazilian subtropical agroecosystem under different management systems. Soil Biol. Biochem., 96, pp. 191-197. https://doi.org/10.1016/j.soilbio.2016.02.010
115. Weller, D.M., Raaijmakers, J.M., Gardener, B.B.M. & Thomashow, L.S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol., 40, pp. 309-348. https://doi.org/10.1146/annurev.phyto.40.030402.110010
116. Simon, A. & Sivasithamparam, K. (1989). Pathogen-suppression: a case study in biological suppression of Gaeumannomyces graminis var. Tritici in soil. Soil Biol. Biochem., 21, pp. 331-337. https://doi.org/10.1016/0038-0717(89)90139-9
117. Pane, C., Piccolo, A., Spaccini, R., Celano, G., Vilecco, D. & Zaccardelli, M. (2013). Agricultural waste-based composts exhibiting suppressivity to diseases caused by the phytopathogenic soil-borne fungi Rhizoctonia solani and Sclerotinia minor. Appl. Soil Ecol., 65, pp. 43-51. https://doi.org/10.1016/j.apsoil.2013.01.002
118. Fu, L., Penton, C.R., Ruan, Y., Shen, Z., Xue, C., Li, R. & Shen, Q. (2017). Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol. Biochem., 104, pp. 39-48. https://doi.org/10.1016/j.soilbio.2016.10.008
119. Crozier, C.R., Creamer, N.G. & Cubeta, M.A. (2000). Fertilizer management impacts on stand establishment, disease, and yield of Irish potato. Potato Res., 43, pp. 49-59. https://doi.org/10.1007/BF02358513
120. Chen, D., Wang, X., Zhang, W., Zhou, Z., Ding, C., Liao, Y. & Li, X. (2020). Persistent organic fertilization reinforces soil-borne disease suppressiveness of rhizosphere bacterial community. Plant Soil., 452, pp. 313-28. https://doi.org/10.1007/s11104-020-04576-3
121. Datta, B. & Chakrabartty, P.K. (2014). Siderophore biosynthesis genes of Rhizobium sp. isolated from Cicer arietinum L. 3 Biotech., 4, pp. 391-401. https://doi.org/10.1007/s13205-013-0164-y
122. Vargas, L.K., Volpiano, C.G., Lisboa, B.B., Giongo, A., Beneduzi, A. & Passaglia, L.M.P. (2017). Potential of rhizobia as plant growth-promoting rhizobacteria. In Khan, M.S., Zaide, A., Musarrat, J. (Eds.). Microbes for Legume Improvement. 2nd ed. (pp. 153-174). Berlin: Springer. https://doi.org/10.1007/978-3-319-59174-2_7
123. Volpiano, C.G., Lisboa, B.B., Sao, Jose J.F.B., de Oliveira, A.M.R., Beneduzi, A., Passaglia, L.M.P. & Vargas, L.K. (2018). Rhizobium strains in the biological control of the phytopathogenic fungi Sclerotium (Athelia) rolfsii on the common bean. Plant Soil, 432, pp. 229-43. https://doi.org/10.1007/s11104-018-3799-y
124. Lugtenberg, B. & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol., 63, pp. 541-56. https://doi.org/10.1146/annurev.micro.62.081307.162918
125. Kohl, J., Kolnaar, R. & Ravensberg, W.J. (2019). Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci., 10, 845. https://doi.org/10.3389/fpls.2019.00845
126. Batista, B.D. & Singh, B.K. (2021). Realities and hopes in the application of microbial tools in agriculture. Microbial biotechnol., 14 (4), pp. 1258-1268. https://doi.org/10.1111/1751-7915.13866
127. Samada, L.H. & Tambunan, U.S.F. (2020). Biopesticides as promising alternatives to chemical pesticides: a review of their current and future status. Online J. Biol. Sci., 20, pp. 66-76. https://doi.org/10.3844/ojbsci.2020.66.76
128. Abbas, M.S.T. (2018). Genetically engineered (modified) crops (Bacillus thuringiensis crops) and the world controversy on their safety. Egypt. J. Biol. Pest. Control., 28, 52. https://doi.org/10.1186/s41938-018-0051-2
129. Patel, S. & Rahul, S.N. (2020). Role of microbial insecticides in insect pest management. Pop. Kheti, 8, pp. 88-92.
130. Kumar, K., Gambhir, G., Dass, A., Tripathi, A.K., Singh, A., Jha, A.K., Yadava, P., Choudhary, M. & Rakshit, S. (2020). Genetically modified crops: current status and future prospects. Planta, 251, pp. 1-27. https://doi.org/10.1007/s00425-020-03372-8
131. Phillips, M.W.A. (2020). Agrochemical industry development, trends in R&D and the impact of regulation. Pest. Manag. Sci., 76, pp. 3348-3356. https://doi.org/10.1002/ps.5728
132. Ruano-Rosa, D., Arjona-Girona, I. & Lopez-Herrera, C.J. (2018). Integrated control of avocado white root rot combining low concentrations of fluazinam and Trichoderma spp. Crop Prot., 112, pp. 363-370. https://doi.org/10.1016/j.cropro.2017.06.024
133. Topolovec-Pintaric, S. (2019). Trichoderma: invisible partner for visible impact on agriculture. In Shah, M.M., Sharif, U., Buhari, T.R. (Eds). Trichoderma - The Most Widely Used Fungicide. IntechOpen. https://doi.org/10.5772/intechopen.83363
134. Woo, S.L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G. & Lorito, M. (2014). Trichoderma-based products and their widespread use in agriculture. Open Mycol. J., 8, pp. 71-126. https://doi.org/10.2174/1874437001408010071
135. Gordon-Lennox, G., Walther, D. & Gindrat, D. (1987). Utilisation d'antagonists pour l'entrobage des semences: efficacite et mode d'action contre les agents de la fonte des semies. Bul. OEPP, 17 (4), pp. 631-637. https://doi.org/10.1111/j.1365-2338.1987.tb00084.x
136. Kopylov, Y.P., Nadkernychnyi, S.P., Bilyavska, L.O. & Holubets, O.V. (2010). Inducing resistance of winter wheat plants to root rot pathogens with the assistance of a soil saprophytic fungus Chaetomium cochiodes Palliser. 135. Microbiol. Biotechnol., 1, pp. 80-87 [in Ukrainian]. https://doi.org/10.18524/2307-4663.2010.1(9).98590
137. Huang, H. (1978). Gliocladium catenulatum: hyperparasite of Sclerotinia sclerotiorum and Fusarium species. Can. J. Bot., 56 (18), pp. 2243-2246. https://doi.org/10.1139/b78-270
138. Pieta, D. (1991). Micoparasitic two Penicillium vermiculatum Dang and Verticillium tenerum (Nees ex Pers.) Link against some bean phytopathogens. Biul. LTN. Biol., 30 (1-2), pp. 23-30 [in Polish].
139. Li, B., Li, Q., Xu, Z., Zhang, N., Shen, Q. & Zhang, R. (2014). Responses of benefificial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Front. Microbiol., 5, 636. https://doi.org/10.3389/fmicb.2014.00636
140. Raza, W., Wei, Z., Ling, N., Huang, Q. & Shen, Q. (2016). Effect of organic fertilizers prepared from organic waste materials on the production of antibacterial volatile organic compounds by two biocontrol Bacillus amyloliquefaciens strains. J. Biotechnol., 227, pp. 43-53. https://doi.org/10.1016/j.jbiotec.2016.04.014
141. Radhakrishnan, R., Hashem, A. & Abd_Allah, E.F. (2017). Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front. Physiol., 8, 667. https://doi.org/10.3389/fphys.2017.00667
142. Sessitsch, A., Brader, G., Pfaffenbichler, N., Gusenbauer, D. & Mitter, B. (2018). The contribution of plant microbiota to economy growth. Microb. Biotechnol., 11 (5), 801. https://doi.org/10.1111/1751-7915.13290
143. Fortune Business Insights (2021). Market Research Report. Retrieved from https://www.fortunebusinessinsights.com/industry-reports/agricultural-microbial-market-100412
144. Sammauria, R., Kumawat, S., Kumawat, P., Singh, J. & Jatwa, T.K. (2020). Microbial inoculants: potential tool for sustainability of agricultural production systems. Arch. Microbiol., 202, pp. 677-693. https://doi.org/10.1007/s00203-019-01795-w
145. European Commission. Reinforcing Europe's Resilience: Halting Biodiversity Loss and Building a Healthy and Sustainable Food System. Press Release. 2020. Retrieved from https://ec.europa.eu/commission/presscorner/detail/en/ip_20_884
146. Kumar, V. & Singh, K.P. (2001). Enriching vermicompost by nitrogen fixing and phosphate solubilizing bacteria. Bioresource Technol., 76 (2), pp. 173-175. https://doi.org/10.1016/S0960-8524(00)00061-4
147. Skrylnik, Ie., Tovstiy, Iu. & Hetmanenko, V. (2016). Change of quantitative and qualitative characteristics of the organic component in the chicken manure composting. Biol. Res. and Nature Management, 8 (5-6), pp. 53-57. [in Ukrainian]. https://doi.org/10.31548/bio2016.05.008
148. Li, J., Wang, X., Cong, C., Wan, L., Xu, Y., Li, X., Xou, F., Wu, Y. & Wang, L. (2020). Inoculation of cattle manure with microbial agents increases efciency and promotes maturity in composting. 3. Biotech., 10 (3), pp. 1-9. https://doi.org/10.1007/s13205-020-2127-4
149. Van Fan, Y., Klemes, J.J., Lee, C.T. & Ho, C.S. (2018). Efficiency of microbial inoculation for a cleaner composting technology. Clean Techn. Environ. Policy, 20(3), pp. 517-527. https://doi.org/10.1007/s10098-017-1439-5
150. Lee, Y. (2016). Various microorganisms' roles in composting: a review. APEC Youth Sci. J., 8 (1), pp. 11-15.
151. Rastogi, M., Nandal, M. & Khosla, B. (2020). Microbes as vital additives for solid waste composting. Heliyon, 6 (2), e03343. https://doi.org/10.1016/j.heliyon.2020.e03343
152. Gatsenko, M.V. & Volkogon, V.V. (2010). Optimization of vermicomposting of organics enriched with phosphorites with participation of phosphate-mobilizing microorganisms. Mikrobiol. Zh., 3, pp. 14-19 [in Ukrainian].
153. Gatsenko, M.V., Volkogon, N.V., Lutsenko, N.V. & Volkogon, V.V. (2011). Effect of Pseudomonas putida 17 on the accumulation of phytohormones in vermicompost. Silskohosp. mikrobiol., 12, pp. 82-91 [in Ukrainian]. https://doi.org/10.35868/1997-3004.13.82-91
154. Gatsenko, M.V., Volkohon, V.V. & Lutsenko, N.V. (2010). Efficiency of vermicomposts enriched with phosphorites and phosphate-mobilising bacteria in cucumber cultivation. Bull. Inst. of Grain Farm., 39, pp. 69-73 [in Ukrainian].
155. Molla, A.H., Haque, M., Haque, A. & Ilias, G.N.M. (2012). Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agric. res., 1 (3), pp. 265-272. https://doi.org/10.1007/s40003-012-0025-7
156. Merzlaya, G.E. & Lysenko, V.P. (2005). Resources of poultry farms for the reproduction of organic fertilizers. Agrohim. vestnik, 3, pp. 12-13 [in Russian].
157. Volkohon, V.V., Dimova, S.B., Myagka, M.V., Derkach, S.M., Lutsenko, N.V., Shtanko, N.P. & Tsentilo L.V. (2016). Biocomposting of poultry manure by the fungal association Trichoderma harsianum 128. Visnyk agrarnoi nauky, 11, pp. 13-18 [in Ukrainian]. https://doi.org/10.31073/agrovisnyk201611-02
158. Hutchinson, C.M. (1999). Trichoderma virens-inoculated composted chicken manure for biological weed control. Biol. Control, 16, pp. 217-222. https://doi.org/10.1006/bcon.1999.0759
159. Wan, L., Wang, X., Cong, C., Li, J., Xu, Y., Li, X., Hou, F., Wu., Y. & Wang, L. (2020). Effect of inoculating microorganisms in chicken manure composting with maize straw. Bioresource Technol., 301, 122730. https://doi.org/10.1016/j.biortech.2019.122730
160. Malusa, E., Sas-Paszt, L. & Ciesielska, J. (2012). Technologies for beneficial microorganisms inocula used as biofertilizers. Sci. World J., 491206, https://doi.org/10.1100/2012/491206
161. Reddy, C.A. & Saravanan, R.S. (2013). Polymicrobial multi-functional approach for enhancement of crop productivity. Adv. Appl. Microbiol., 82, pp. 53-113. https://doi.org/10.1016/B978-0-12-407679-2.00003-X
162. Sheth, R.U., Cabral, V., Chen, S.P. & Wang, H.H. (2016). Manipulating bacterial communities by in situ microbiome engineering. Trends Genet., 32, pp. 189-200. https://doi.org/10.1016/j.tig.2016.01.005
163. Arif, I., Batool, M. & Schenk, P.M. (2020). Plant microbiome engineering: expected benefits for improved crop growth and resilience. Trends Biotechnol., 38, pp. 1385-1396. https://doi.org/10.1016/j.tibtech.2020.04.015
164. Volkogon, V.V., Mamchur, A.E., Lemeshko, S.V. & Minyaylo, V.G. (1995). Azospirillum endophytes of cereal seeds. Mikrobiol. Zh., 57 (1), pp. 14-19 [in Russian].
165. Volkogon, V.V., Dul'nev, P.G., Kovtun, E.P., Nosovets, E.I. & Onishchenko, E.I. (1996). Effect of phytohormones and their synthetic analogs on the activity of associative nitrogen fixation. Mikrobiologiya, 65 (6), pp. 850-854 [in Russian].
166. Carvalhais, L.C., Dennis, P.G. & Schenk, P.M. (2014). Plant defence inducers rapidly influence the diversity of bacterial communities in a potting mix. Appl. Soil Ecol., 84, pp. 1-5. https://doi.org/10.1016/j.apsoil.2014.06.011
167. Liu, H., Khan, M.Y., Carvalhais, L.C., Delgado-Baquerizo, M., Yan, L., Crawford, M., Dennis, P.G., Singh, B. & Schenk, P.M. (2019). Soil amendments with ethylene precursor alleviate negative impacts of salinity on soil microbial properties and productivity. Sci. Rep., 9, 6892. https://doi.org/10.1038/s41598-019-43305-4
168. Singh, B.K. (2010). Exploring microbial diversity for biotechnology: the way forward. Trends Biotechnol., 28, pp. 111-116. https://doi.org/10.1016/j.tibtech.2009.11.006
169. Ahmad, S., Imran, M., Hussain, S., Mahmood, S., Hussain, A. & Hasnain, M. (2017). Bacterial impregnation of mineral fertilizers improves yield and nutrient use efficiency of wheat. J. Sci. Food Agric., 97 (11), pp. 3686-3690. https://doi.org/10.1002/jsfa.8228