Фізіологія рослин і генетика 2020, том 52, № 2, 140-151, doi: https://doi.org/10.15407/frg2020.02.140

Якість зерна продуктивних мутантів Triticum aestivum L., індукованих техногенним забрудненням навколишнього середовища

Якимчук Р.А.

  • Інститут фізіології рослин і генетики Національної академії наук України 03022 Київ, вул. Васильківська, 31/17 Уманський державний педагогічний університет імені Павла Тичини 20300 Умань, вул. Садова, 2

У результаті вивчення мутантів Triticum aestivum L., індукованих забрудненням навколишнього середовища мутагенними чинниками, виділено зразки, з підвищеною продуктивністю. Оскільки створення високоврожайних і високоякісних сортів є пріоритетним завданням державного рівня для сучасної селекції пшениці, ми вивчали окремі параметри якості зерна продуктивних мутантів T. aestivum та встановили можливості використання техногенно за­бруднених територій при створенні селекційно-цінного матеріалу. Проаналізовано мутантні зразки озимої пшениці сортів Альбатрос одеський і Зимоярка з попереднього випробування (М6), індуковані забрудненням радіонуклідами зони відчуження Чорнобильської АЕС та промислової зони підприємств із видобутку урану, важкими металами прилеглих до теплових електростанцій і металургійних підприємств територій, ксенобіотиками сховищ пестицидів і токсичних відходів. Якість зерна визначали за вмістом у ньо­му білка і клейковини, показниками твердозерності та седиментації SDS-30. Найвищими вмістами білка і сирої клейковини в зерні характеризувались високоврожайні мутантні зразки, індуковані впливом викидів Бурштинської ТЕС, радіонуклідним забрудненням зони відчуження Чорнобильської АЕС, промислової зони Інгульської шахти. Показник седиментації білкового комплексу борошна мутантних зразків варіював у межах 65–92 мл для сорту Альбатрос одеський та 48—64 мл для сорту Зимоярка. Істотно зростав він у мутантів, урожайність яких не перевищувала рівня вихідного сорту. Досліджувані мутанти пшениці сорту Альбатрос одеський за показником твердозерності значно поступались контрольним. Показники твердозерності на рівні 61—67 вдало поєднувались із високою врожайністю у зразках сорту Зимоярка, отриманих за умов впливу забруднень радіонуклідами зони відчуження Чорнобильської АЕС та важкими металами викидів промислових підприємств. Виявлено низку високопродуктивних мутантів, у яких унаслідок зростання вмісту білка в зерні або підвищення врожайності вихід протеїну з одиниці площі істотно перевищував контрольний показник. Отже, за дії техногенних мутагенних чинників навколишнього середовища поліпшується якість зерна пшениці й одночасно зберігається потенціал урожайності вихідного сорту.

Ключові слова: Triticum aestivum L., мутагенні чинники, якість зерна, клейковина, твердозерність, білкова продуктивність

Фізіологія рослин і генетика
2020, том 52, № 2, 140-151

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Waugh, R., Leader, D.J., McCallum, N. & Caldwell, D. (2006). Harvesting the potential of induced biological diversity. Trends in Plant Science, No. 11, pp. 71-79. https://doi.org/10.1016/j.tplants.2005.12.007

2. Morgun, V.V. & Rybalka, O.I. (2017). Strategy of cereals genetic improvement aimed at food safety, health promotion and industry needs. Visnyk Natsionalnoi akademii nauk Ukrainy, No. 3, pp. 54-64 [in Ukrainian]. https://doi.org/10.15407/visn2017.03.054

3. Guseynov, S.I. (2015). Valuable varieties of soft wheat cultivars for quality selection. Tavricheskiy nauchnyiy obozrevatel, No. 3, pp. 1-4 [inRussian].

4. Mitrofanova, O.P. & Hakimova, A.G. (2016). New genetic resources in the selection of wheat to increase the protein content in grain. Vavilovskiy zhurnal genetiki i selektsii, 20, No. 4, pp. 545-554 [in Russian]. https://doi.org/10.18699/VJ16.177

5. Samofalov, A.P. (2003). Change in the main economic and biological characteristics and properties of winter common wheat in the process of selection (Extended abstract of candidate thesis). All-Russian Research Institute of Grain Crops, Zernograd, Russia, 20 p. [in Russian].

6. Krotova, L.A. & Popolzuhina, N.A. (2011). The influence of chemical and biological mutagens on the relationship of quantitative traits in common wheat. Vestnik Altayskogo gosudarstvennogo agrarnogo universiteta, 75, No. 1, pp. 45-48 [in Russian].

7. Popolzuhina, N.A. & Rutts, R.I. (2006). Induced mutagenesis and hybridization in solving the problem of grain quality of spring soft wheat. Doklady Rossiyskoy akademii selskohozyaystvennyih nauk, No. 3, pp. 3-4 [in Russian].

8. Eyges, N.S. (2013). The historical role of Rapoport in genetics. Continued research using chemical mutagenesis method. Vavilovskiy zhurnal genetiki i selektsii, 17, No. 1, pp.162-172 [in Russian].

9. Huaili, Q., Lanming, X. & Fei, H. (2005). Biological effect of the seeds of Arabidopsis thaliana irradiated by MeV protons. Radiation Effect & Defects in Solids, No. 160, pp. 131-136. https://doi.org/10.1080/10420150500132596

10. Li-Jun, W., Jiang-Long, X. & Jun-Min, W. (2006). A comparative study on mutagenic effects of space flight and irradiation of г-rays on rice. Agricultural Sciences in China, 5, No. 11, pp. 812-819. https://doi.org/10.1016/S1671-2927(06)60129-6

11. Yakymchuk, R.A. (2018). Effectiveness of using mutations induced in radiation-contaminated territories in improving winter wheat varieties. Faktory eksperymentalnoi evoliutsii orhanizmiv, No. 23, pp. 170-175 [in Ukrainian]. https://doi.org/10.7124/FEEO.v23.1009

12. Yakymchuk, R. & Sorokina, S. (2017). The analysis of mutation variability of winter wheat under soil contamination with heavy metals of industrial discharges. Science Rise: Biological Science, No. 1, pp. 50-55. https://doi.org/10.15587/2519-8025.2017.93799

13. Yakymchuk, R.A. (2016). Mutational variability of Triticum aestivum L. under soil contamination with pesticides and toxic wastes. Visnyk Kharkivskoho natsionalnoho ahrarnoho universytetu. Seriia: Biolohiia, 3, No. 39, pp.72-80 [in Ukrainian].

14. Rybalka, O.I., Chervonis, M.V. & Lytvynenko, M.A. (2009). Evaluation of wheat grain quality in the early stages of breeding. Visnyk ahrarnoi nauky, No. 1, pp. 44-48 [in Ukrainian].

15. Dospehov, B.A. (1985). Field experiment methodology (with the basics of statistical processing of research results). Moskva: Kolos, 351 p. [in Russian].

16. Hlestkina, E.K., Pshenichnikova, T.A., Usenko, N.I. & Otamanova Yu.S. (2016). Prospective applications of molecular genetic approaches to control technological properties of wheat grain in the context of the "grain-flour-bread" chain. Vavilovskiy zhurnal genetiki i selektsii, 20, No. 4, pp. 511-527 [inRussian]. https://doi.org/10.18699/VJ15.140

17. Herman, M.M. & Mishchenko, O.V. (2014). Dynamics of dry winter wheat grain accumulation. Visnyk Poltavskoi derzhavnoi ahrarnoi akademii, No. 1, pp. 14-16 [in Ukrainian].

18. Rybalka, O.I. (2011). Wheat quality and its improvement. Kyiv: Lohos, 496 p. [in Ukrainian].

19. Morgun, V.V., Sichkar, S.M., Pochynok, V.M., Niniieva, A.K., & Chuhunkova, T.V. (2016). Characterization of spelt collection samples (Triticum spelta L.) by elements of plant productivity structure and baking quality. Fiziologiya rasteniy i genetika, 48, No. 2, pp. 112-119 [in Ukrainian]. https://doi.org/10.15407/frg2016.02.112

20. Yakymchuk, R.A. (2018). Genetic consequences of the contamination of the environment with natural and technogenic mutagenic factors. (Extended abstract of Doctor thesis). Institute of Plant Physiology and Genetics, Kyiv, Ukraine [in Ukrainian].