Фізіологія рослин і генетика 2018, том 50, № 4, 279-298, doi: https://doi.org/10.15407/frg2018.04.279

GPC-B1 (NAM-B1) ГЕН ЯК НОВИЙ ГЕНЕТИЧНИЙ РЕСУРС У СЕЛЕКЦІЇ ПШЕНИЦІ НА ПІДВИЩЕННЯ ВМІСТУ БІЛКА В ЗЕРНІ ТА МІКРОЕЛЕМЕНТІВ

Рибалка О.I.1,2, Моргун Б.В.2,3, Поліщук С.С.1

  1. Селекційно-генетичний інститут—Національний центр насіннєзнавства та сортовивчення Національної академії аграрних наук України 65036 Одеса, Овідіопольська дорога, 3
  2. Iнститут фізіології рослин і генетики Національної академії наук України 03022 Київ, вул. Васильківська, 31/17
  3. Iнститут клітинної біології та генетичної інженерії Національної академії наук України 03680 Київ, вул. Академіка Заболотного, 148 e-mail: molgen@icbge.org.ua

Підвищення вмісту білка в зерні пшениці залишається одним із стратегічних завдань сучасної селекції. Однак вміст білка в зерні є складною полігенно детермінованою ознакою, значною мірою залежною від агрокліматичних умов вирощування і, як наслідок, складно контрольованою і керованою в процесі селекції. У дикорослої пшениці двозернянки T. turgidum ssp. dicoccoides із національних фондів зародкової плазми Iзраїлю у хромосомі 6В іден­тифіковано ген дикого типу Gpc-B1 (grain protein concentration), який значно підвищує вміст протеїну в зерні і водночас кількох ключових мікроелементів унаслідок пришвидшення фізіологічного старіння рослин та ефективнішої ремобілізації азоту з вегетативних органів у зерно. Ген Gpc-B1 чинить мінорні негативні ефекти на деякі структурні елементи врожаю (маса зернівки і натура), не знижуючи при цьому врожаю зерна per ce. Ген Gpc-B1 клонований і детально досліджений як за молекулярною структурою, так і за функціональністю. У процесі серії експериментів, виконаних у різних країнах світу на різному генетичному фоні та за контрастних умов вирощування, доведено високу ефективність використання гена Gpc-B1 у селекційних програмах з метою підвищення вмісту білка і ключових мікроелементів у зерні, поліпшення його технологічної і споживчої цінності.

Ключові слова: пшениця, вміст білка, мінералів, хромосома 6В, ген Gpc-B1 (NAM-B1), фізіологічне старіння, ремобілізація азоту, T. turgidum ssp. dicoccoides.

Фізіологія рослин і генетика
2018, том 50, № 4, 279-298

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Alexandratos, N. & Bruinsma, J. (2012). World Agriculture: towards 2030/2050. The 2012 revision. ESA working paper No. 12-03 (Food Agric Org, Rome).

2. Henchion, M., Hayes, M., Mullen, A., Fenelon, M. & Tiwari, B. (2017). Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. A review. Foods, pp. 1-21. https://doi.org/10.3390/foods6070053

3. Johnson, V., Mattern, P., Peterson, C. & Kuhr, S. (1985). Improvement of wheat protein by traditional breeding and genetic techniques. Cereal Chemistry, 62(5), p. 350-355.

4. Simmonds, N. (1995). The relation between yield and protein in cereal grain. J. Sci. Food Agric., 67, pp. 309 -315. https://doi.org/10.1002/jsfa.2740670306

5. Levy, A. & Feldman, M. (1989). Location of genes for high grain protein percentage and other quantitative traits in wild wheat, T. turgidum var. dicoccoides. Euphytica, 41, pp. 113-122. https://doi.org/10.1007/BF00022420

6. Snape, J., Hyne, V. & Aitken, K. (1995). Targeting genes in wheat using marker-mediated approaches. In: ZS Li, Xin ZY (eds) Proc. 8th Int. wheat genetics symposium, Beijing, 20–25 July 1993. China Agric Scientech Press, Beijing, China, pp. 749-759.

7. Joppa, L., Du, C., Hart, G. & Hareland, G. (1997). Mapping genes for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci., 37, pp. 1586-1589. https://doi.org/10.2135/cropsci1997.0011183X003700050030x

8. Terasawa, Y., Ito, M., Tabiki, T., Nagasawa, K., Hatta, K. & Nishio, Z. (2016). Mapping of major QTL associated with protein content on chromosome 2B in hard red winter wheat (Triticum aestivum L.). Breed. Sci., 66, pp. 471-480. https://doi.org/10.1270/jsbbs.16026

9. McIntosh, R.A., Dubcovsky, J., Rogers, W.J., Rogers, W.J., Morris, C., Appels, R. & Xia, X.C. (2013). Catalogue of Gene Symbols for Wheat. 12th Int. Wheat Genet. Symp. 8—13 Sept.,Yokohama, Japan.

10. Zhao, F. & McGrath, S. (2009). Biofortification and phytoremediation. Curr. Opin. Plant Biol., 12, pp. 373- 380. https://doi.org/10.1016/j.pbi.2009.04.005

11. FAO, WHO, Rome declaration on nutrition. In: Second Int. Conference on Nutrition. Rome, Italy, 2014.

12. Hirschi, K.D. (2009). Nutrient biofortification of food crops. Annu. Rev. Nutr., 29, pp. 401-421. https://doi.org/10.1146/annurev-nutr-080508-141143

13. Mitrofanova, O.P. & Khakimova, А.G. (2016). New genetic resources in wheat breeding for an increased grain protein content. Vavilovskii zhurnal genetiki i selektsii, 20, No. 4, pp. 545-554. doi: https://doi:10.18699/VJ16.177 [in Russian]. https://doi.org/10.18699/VJ16.177

14. Avivi, L. (1978). High protein content in wild tetraploid Triticum dicoccoides Korn. Proc. 5th Int. Wheat Genet. Symp. Ed. S. Ramanujam. Indian Soc. of Genet. and Plant Breed., New Delhi, India, pp. 372-380.

15. Joppa, L. & Cantrell, R. (1990). Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci., 30, pp. 1059-1064. https://doi.org/10.2135/cropsci1990.0011183X003000050021x

16. Chee, P., Elias, E., Anderson, J. & Kianian, S. (2001). Evaluation of a high grain protein QTL from Triticum turgidum L. var. dicoccoides in an adapted durum wheat background. Crop Sci., 41, pp. 295-301. https://doi.org/10.2135/cropsci2001.412295x

17. Uauy, C., Distelfeld, A., Fahima, T., Blechl, A. & Dubcovsky, J. (2006). A NAC gene regulating senescence improves grain protein, zinc and iron content in wheat. Science, 314, pp. 1298-1301. https://doi.org/10.1126/science.1133649

18. Distelfeld, A., Uauy, C., Fahima, T. & Dubcovsky, J. (2006). Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol., 169, pp. 753-763. https://doi.org/10.1111/j.1469-8137.2005.01627.x

19. Guo, Y. & Gan, S. (2006). AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J., 46, pp. 601-612. https://doi.org/10.1111/j.1365-313X.2006.02723.x

20. Hagenblad, J., Asplund, L., Balfourier, F., Ravel, C. & Leino, M. (2012). Strong presence of the high grain protein content allele of NAM-B1 in Fennoscandian wheat. Theor. and Appl. Genet., 125, pp. 1677-1686. https://doi.org/10.1007/s00122-012-1943-2

21. Waters, B., Uauy, C., Dubcovsky, J. & Grusak, M. (2009). Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J. Expt. Bot., 60, pp. 4263-4274. https://doi.org/10.1093/jxb/erp257

22. Distelfeld, A., Avni, R. & Fischer, A. (2014). Senescence, nutrient remobilization, and yield in wheat and barley. J. Expt. Bot., 65, No. 14, pp. 3783-3798. doi: https://doi:10.1093/jxb/ert477 https://doi.org/10.1093/jxb/ert477

23. Dubcovsky, J., Fahima, T., Uauy, C. & Distelfeld, A. (2010). NAC from wheat for increasing grain protein content. United States Patent No.: US 7820882B2. Oct. 26.

24. Kade, M., Barneix, J., Olmos, S. & Dubcovsky, J. (2005). Nitrogen uptake and remobilization in tetraploid Langdon durum wheat and a recombinant substitution line with the high grain protein gene Gpc-B1. Plant Breed., 124, pp. 343-349. https://doi.org/10.1111/j.1439-0523.2005.01110.x

25. Distelfeld, A., Cakmak, I., Peleg, Z., Ozturk, L., Yazici, A.M., Budak, H., Saranga, Y. & Fahima, T. (2007). Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol. Plantarum, 129, pp. 635-643. https://doi.org/10.1111/j.1399-3054.2006.00841.x

26. Distelfeld, A., Korol, A., Dubcovsky, J., Uauy, C., Blake, T. & Fahima, T. (2008). Colinearity between the barley grain protein content (GPC) QTL on chromosome arm 6HS and the wheat Gpc-B1 region. Mol. Breed., 22, pp. 25-38. https://doi.org/10.1007/s11032-007-9153-3

27. Distelfeld, A., Pearce, S., Avni, R., Scherer, B., Uauy, C., Piston, F., Slade, A., Zhao, R. & Dubcovsky, J. (2012). Divergent functions of orthologous NAC transcription factors in wheat and rice. Plant Mol. Biol., 78, pp. 515-524. https://doi.org/10.1007/s11103-012-9881-6

28. Mickelson, S., See, D., Meyer, F., Garner, J., Foster, C., Blake, T. & Fischer, A. (2003). Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves. J. Expt. Bot., 54, pp. 801-812. https://doi.org/10.1093/jxb/erg084

29. See, D., Kanazin, V., Kephart, K. & Blake, T. (2002). Mapping genes controlling variation in barley grain protein concentration. Crop Sci., 42, pp. 680-685. https://doi.org/10.2135/cropsci2002.6800

30. Jukanti, A. & Fischer, A. (2008). A high-grain protein content locus on barley (Hordeum vulgare) chromosome 6 is associated with increased flag leaf proteolysis and nitrogen remobilization. Physiol. Plantarum, 132, pp. 426 -439. https://doi.org/10.1111/j.1399-3054.2007.01044.x

31. Jamar, C., Loffet, F., Frettinger, P., Ramsay, L., Fauconnier, M.-L. & du Jardin, P. (2010). NAM-1 gene polymorphism and grain protein content in Hordeum. J. Plant Physiol., 167, pp. 497-501. https://doi.org/10.1016/j.jplph.2009.10.014

32. Tabbita, F., Pearce, S. & Barneix, A. (2017). Breeding for increased grin protein and micronutrient content in wheat: Ten years of the GPC-B1 gene. J. Cereal Sci., 73, pp. 183-191. https://doi.org/10.1016/j.jcs.2017.01.003

33. Asplund, L., Hagenblad, J. & Leino, M. (2010). Re-evaluating the history of the wheat do­mestication gene NAM-B1 using historical plant material. J. Archaeol. Sci., 37, pp. 2303-2307. https://doi.org/10.1016/j.jas.2010.04.003

34. Leino, M., Hagenblad, J., Edqvist, J. & Strese, E. (2009). DNA preservation and utility of a historic seed collection. Seed Sci. Res., 19, pp. 125-135. https://doi.org/10.1017/S0960258509990055

35. Abedi, T., Alemzadeh, A. & Kazemeini, S. (2011). Wheat yield and grain protein response to nitrogen amount and timing. Aust. J. Crop Sci., 5, pp. 330-336.

36. Tea, I., Genter, T., Naulet, N., Boyer, V., Lummerzheim, M. & Kleiber, D. (2004). Effect of foliar sulfur and nitrogen fertilization on wheat storage protein composition and dough mixing properties. Cereal Chem., 81, pp. 759-766. https://doi.org/10.1094/CCHEM.2004.81.6.759

37. Kumar, J., Jaiswal, V., Kumar, A., Kumar, N., Mir, R., Kumar, S., Dhariwal, R., Tyagi, S., Khandelwal, M., Prabhu, K., Prasad, R., Balyan, H. & Gupta, P. (2011). Introgression of a major gene for high grain protein content in some Indian breadwheat cultivars. Crop. Res., 123, pp. 226-233. https://doi.org/10.1016/j.fcr.2011.05.013

38. Mishra, V., Pushpendra, K., Balasubramaniam, A., Ramesh, C., Neeraj, K., Manish, K., Punam, S. & Arun, K. (2015). Introgression of a gene for high grain protein content (Gpc-B1) into two leading cultivars of wheat in Eastern Gangetic Plains of India through marker assisted backcross breeding. J. Plant Breed. Crop Sci., 7, pp. 292-300. https://doi.org/10.5897/JPBCS2015.0514

39. Vishwakarma, M., Arun, B., Mishra, V., Yadav, P., Kumar, H. & Joshi, A. (2016). Marker-assisted improvement of grain protein content and grain weight in Indian bread wheat. Euphytica, 208, pp. 313-321. https://doi.org/10.1007/s10681-015-1598-6

40. Vishwakarma, M., Mishra, V., Gupta, P., Yadav, P., Kumar, H. & Joshi, A. (2014). Introgression of the high grain protein gene Gpc-B1 in an elite wheat variety of Indo-Gangetic Plains through marker assisted backcross breeding. Current Plant Biol., 1, pp. 60-67. https://doi.org/10.1016/j.cpb.2014.09.003

41. Tabbita, F., Lewis, S., Vouilloz, J., Ortega, M., Kade, M., Abbate, P. & Barneix, A. (2012). Effect of the Gpc-B1 locus on high grain protein content introgressed into Argentinean wheat germplasm. Plant Breed., 132, pp. 48-52. https://doi.org/10.1111/pbr.12011

42. Uauy, C., Brevis, J. & Dubcovsky, J. (2006). The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J. Exp. Bot., 57, pp. 2785-2794. https://doi.org/10.1093/jxb/erl047

43. Cantu, D., Pearce, S., Distelfeld, A., Christiansen, M., Uauy, C., Akhunov, E., Fahima, T. & Dubcovsky, J. (2011). Effect of the down-regulation of the high Grain Protein Content (GPC) genes on the wheat transcriptome during monocarpic senescence. BMC Genomics, 12, pp. 2-17. https://doi.org/10.1186/1471-2164-12-492

44. Pearce, S., Tabbita, F., Cantu, D., Buffalo, V., Avni, R., Vazquez-Gross, H., Zhao, R., Conley, C., Distelfeld, A. & Dubcovksy, J. (2014). Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence. BMC Plant Biol., 14, pp. 2-23. https://doi.org/10.1186/s12870-014-0368-2

45. Brevis, J. & Dubcovsky, J. (2010). Effects of the chromosome region including the Gpc-B1 locus on wheat grain and protein yield. Crop Sci., 50, pp. 93-104. https://doi.org/10.2135/cropsci2009.02.0057

46. Carter, A., Santra, D. & Kidwell, K. (2012). Assessment of the effects of the Gpc-B1 allele on senescence rate, grain protein concentration and mineral content in hard red spring wheat (Triticum aestivum L.) from the Pacific Northwest Region of the USA. Plant Breed., 131, pp. 62-68. https://doi.org/10.1111/j.1439-0523.2011.01900.x

47. Tabbita, F., Lewis, S., Vouilloz, J., Ortega, M., Kade, M., Abbate, P. & Barneix, A. (2013). Effects of the Gpc-B1 locus on high grain protein content introgressed into Argentinean wheat germplasm. Plant Breed., 132, pp. 48-52. https://doi.org/10.1111/pbr.12011

48. Raboy, V., Noaman, M., Taylor, G. & Pickett, S. (1991). Grain phytic acid and protein are highly correlated in winter wheat. Crop Sci., 31, pp. 631-635. https://doi.org/10.2135/cropsci1991.0011183X003100030017x

49. Feil, B. & Bдnziger, M. (1993). Nitrogen and cultivar effects on the mineral element concentration in the grain of spring wheat. Eur. J. Agron., 2, pp. 205-212. https://doi.org/10.1016/S1161-0301(14)80130-5

50. Feil, B. & Fossati, D. (1995). Mineral composition of triticale grains as related to grain yield and grain protein. Crop Sci., 35, pp. 1426-1431. https://doi.org/10.2135/cropsci1995.0011183X003500050028x

51. Asplund, L., Bergkvist, G., Leino, M., Westerbergh, A. & Weih, M. (2013). Swedish spring wheat varieties with the rare high grain protein allele of NAM-B1 differ in leaf senescence and grain mineral content. PLoS One, 8, pp. 1-11. https://doi.org/10.1371/journal.pone.0059704

52. Avni, R., Zhao, R., Pearce, S., Jun, Y., Uauy, C., Tabbita, F., Fahima, T., Slade, A., Dubcovsky, J. & Distelfeld, A. (2014). Functional characterization of GPC-1 genes in hexaploid wheat. Planta, 239, pp. 313-324. https://doi.org/10.1007/s00425-013-1977-y

53. Gonzбlez, F., Miralles, D. & Slafer, G. (2011). Wheat floret survival as related to pre-anthesis spike growth. J. Exp. Bot., 62, pp. 4889-4901. https://doi.org/10.1093/jxb/err182

54. Borrill, P., Fahy, B., Smith, A. & Uauy, C. (2015). Wheat grain filling is limited by grain filling capacity rather than the duration of flag leaf photosynthesis: a case study using NAM RNAi plants. PLoS One, 10, No. 8, pp. e0134947. doi: https://doi:org/10.1371/journal.pone.0134947 https://doi.org/10.1371/journal.pone.0134947

55. Kovacs, M., Howes, N., Clarke, J. & Leisle, D. (1998). Quality characteristics of durum wheat lines deriving high protein from a Triticum dicoccoides (6b) substitution. J. Cereal Sci., 27, pp. 47-51. https://doi.org/10.1006/jcrs.1997.0144

56. Mesfin, A., Frohberg, R., Khan, K. & Olson, T. (2010). Increased grain protein content and its association with agronomic and end-use quality in two hard red spring wheat populations derived from Triticum turgidum L. var. dicoccoides. Euphytica, 116, pp. 237-242. https://doi.org/10.1023/A:1004004331208

57. Kuhn, J., Stubbs, T. & Carter, A. (2016). Effect of the allele in hard red winter wheat in the US Pacific Northwest. Crop Sci., 56, pp. 1009-1016. https://doi.org/10.2135/cropsci2015.08.0470

58. Brevis, J., Morris, C., Manthey, F. & Dubcovsky, J. (2010). Effect of the grain protein content locus Gpc-B1 on bread and pasta quality. J. Cereal Sci., 51, pp. 357-365. https://doi.org/10.1016/j.jcs.2010.02.004

59. Souza, E., Martin, J., Guttieri, M., O'Brien, K., Habernicht, D., Lanning, S., McLean, R., Carlson, G. & Talbert, L. (2004). Influence of genotype, environment, and nitrogen management on spring wheat quality. Crop Sci., 44, pp. 425-432. https://doi.org/10.2135/cropsci2004.4250

60. Snape, J., Quarrie, S. & Laurie, D. (1996). Comparative mapping and its use for the genetic analysis of agronomic characters in wheat. Euphytica, 89, pp. 27-31. https://doi.org/10.1007/BF00015715

61. Kulwal, P., Kumar, N., Kumar, A., Gupta, R., Balyan, H. & Gupta, P. (2005). Gene networks in hexaploid wheat: interacting quantitative trait loci for grain protein content. Funct. Integr. Genomics, 5, pp. 254-259. https://doi.org/10.1007/s10142-005-0136-3

62. Johnson, A., Kyriacou, B., Callahan, D., Carruthers, L., Stangoulis, J., Lombi, E. & Tester, M. (2011). Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS One, 6, No. 9, pp. e24476. https://doi.org/10.1371/journal.pone.0024476

63. Lee, S., Persson, D., Hansen, T., Husted, S., Schjoerring, J., Kim, Y., Jeon, U., Kim, Y., Kakei, Y., Masuda, H., Nishizawa, N. & An, G. (2011). Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnol. J., 9, pp. 865-873. https://doi.org/10.1111/j.1467-7652.2011.00606.x

64. Masuda, H., Kobayashi, T., Ishimaru, Y., Takahashi, M., Aung, M., Nakanishi, H., Mori, S. & Nishizawa, N. (2013). Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Front. Plant Sci., 4, pp. 132. https://doi.org/10.3389/fpls.2013.00132

65. Masuda, H., Usuda, K., Kobayashi, T., Ishimaru, Y., Kakei, Y., Takahashi, M., Higuchi, K., Nakanishi, H., Mori, S. & Nishizawa, N. (2009). Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice, 2, pp. 155-166. https://doi.org/10.1007/s12284-009-9031-1

66. Takagi, S., Nomoto, K. & Takemoto, T. (2008). Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J. Plant Nutr., 7, pp. 469-477. https://doi.org/10.1080/01904168409363213

67. Takahashi, M. (2003). Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell, 15, pp. 1263-1280.

68. White, P. & Broadley, M. (2011). Physiological limits to zinc biofortification of edible crops. Front. Plant Sci., 2, p. 80. https://doi.org/10.3389/fpls.2011.00080

69. Ishimaru, Y., Masuda, H., Bashir, K., Inoue, H., Tsukamoto, T., Takahashi, M., Nakanishi, H., Aoki, N., Hirose, T., Ohsugi, R. & Nishizawa, N. (2010). Rice metalnicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J., 62, No. 3, pp. 379-390. https://doi.org/10.1111/j.1365-313X.2010.04158.x

70. Lee, S., Chiecko, J., Kim, S., Walker, E., Lee, Y., Guerinot, M. & An., G. (2009). Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol., 150, pp. 786-800. https://doi.org/10.1104/pp.109.135418

71. Tiong, J., Mcdonald, G., Genc, Y., Pedas, P., Hayes, J., Toubia, J., Langridge, P. & Huang, C. (2014). HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytol., 201, pp. 131-143. https://doi.org/10.1111/nph.12468

72. Goto, F., Yoshihara, T., Shigemoto, N., Toki, S. & Takaiwa, F. (1999). Iron fortification of rice seed by the soybean ferritin gene. Nat. Biotechnol., 17, pp. 282-286. https://doi.org/10.1038/7029

73. Oliva, N., Chadha-Mohanty, P., Poletti, S., Abrigo, E., Atienza, G., Torrizo, L., Garcia, R., Dueсas, C., Poncio, M., Balindong, J., Manzanilla, M., Montecillo, F., Zaidem, M., Barry, G., Hervй, P., Shou, H. & Slamet-Loedin, I. (2014). Large-scale production and evaluation of marker-free indica rice IR64 expressing phytoferritin genes. Mol. Breed., 33, pp. 23-37. https://doi.org/10.1007/s11032-013-9931-z

74. Paul, S., Ali, N., Datta, S. & Datta, K. (2014). Development of an iron-enriched highyieldings indica rice cultivar by introgression of a high-iron trait from transgenic iron-biofortified rice. Plant Foods Hum. Nutr., 69, pp. 203-208. https://doi.org/10.1007/s11130-014-0431-z

75. Vasconcelos, M., Datta, K., Oliva, N., Khalekuzzaman, M., Torrizo, L., Krishnan, S., Oliveira, M., Goto, F. & Datta, S. (2003). Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci., 164, pp. 371-378. https://doi.org/10.1016/S0168-9452(02)00421-1

76. Zhang, Y., Xu, Y., Yi, H. & Gong, J. (2012). Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J., 72, pp. 400-410. https://doi.org/10.1111/j.1365-313X.2012.05088.x

77. Borrill, P., Connorton, J., Balk, J., Miller, A., Sanders, D. & Uauy, C. (2014). Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front. Plant Sci., 5, Article 53, pp. 1-8. https://doi.org/10.3389/fpls.2014.00053