Фізіологія рослин і генетика 2018, том 50, № 3, 187-217, doi: https://doi.org/10.15407/frg2018.03.187

СУЧАСНИЙ СТАН ДОСЛІДЖЕНЬ AGROBACTERIUM-ОПОСЕРЕДКОВАНОЇ ТРАНСФОРМАЦІЇ ПШЕНИЦІ

Дубровна О.В., Моргун Б.В.

Інститут фізіології рослин і генетики Національної академії наук України 03022 Київ, вул. Васильківська, 31/17

У літературному огляді проаналізовано сучасний стан досліджень з генетичної інженерії пшениці, зокрема Agrobacterium-опосередкованої трансформації. Розглянуто переваги цього методу порівняно з іншими методами доставки гетерологічних генів. Узагальнено відомості про чинники, які впливають на ефективність Agrobacterium-опосередкованої трансформації: генотип рослин, типи експлантатів; штами Аgrobacterium, векторні плазміди, тканиноспецифічні та індуковані промотори, репортерні й селективні гени.

Ключові слова: Triticum L., Agrobacterium-опосередкована трансформація

Фізіологія рослин і генетика
2018, том 50, № 3, 187-217

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Bavol, A.V., Dubrovna, O.V., Goncharuk, O.M. & Voronova, S.S. (2014). Agrobacterium-mediated transformation of wheat using calli culture. Faktory eksperymental'noi evoliucii orhanizmiv, 15, pp. 16-19 [in Ukrainian].

2. Voronova, S.S., Bavol, A.V. & Dubrovna, O.V. (2015). In planta genetic transformation of bread wheat, using AGLO strain, containing pBi2E with dsRNA suppressor of ProDH gene. Faktory eksperymental'noi evoliucii orhanizmiv, 17, pp. 126-130 [in Ukrainian].

3. Voronova, S.S., Goncharuk, O.M., Bavol, A.V. & Dubrovna, O.V. (2015). Genetic transformation of bread wheat using vector constructs containing the genes of proline metabolism. Visnyk ukrainskoho tovarystva henetykiv i selektsioneriv, 13(1), pp. 28-33 [in Ukrainian].

4. Goncharuk, O.M., Bavol, A.V. & Dubrovna, O.V. (2015). Agrobacterium-mediated transformation of wheat with ornithine-aminotransferase gene by an in planta method. Faktory eksperymental'noi evoliucii orhanizmiv, 17, pp. 131-135 [in Ukrainian].

5. Goncharuk, O.M., Bavol, A.V., Morgun, B.V. & Dubrovna, O.V. (2013). Agrobacterium-mediated transformation of bread wheat by the inoculation of the basal part of the shoot. Faktory eksperymental'noi evoliucii orhanizmiv, 12, pp. 203-207 [in Ukrainian].

6. Gorbatiuk, I.R., Bavol, A.V., Bannikova, M.O. & Morgun, B.V. (2015). Agrobacterium-mediated in planta transformation of bread winter wheat cv. Podolianka. Visnyk Kharkivskoho nacionalnoho universytetu im. V.N. Karazina, Ser: Biol., Iss. 24 (1153), pp. 47-53 [in Ukrainian].

7. Gorbatyuk, I.R., Shcherbak, N.L., Bannikova, M.O., Velykozhon, L.H., Kuchuk, M.V. & Morgun, B.V. (2016). Establishing transgenic wheat plants of cv. Zymoyarka resistant to the herbicide phosphinothricin in vitro. Fiziol. rast. genet, 48, No. 1, pp. 65-74 [in Ukrainian].

8. Dubrovna, O.V., Morgun, B.V. & Bavol, A.V. (2014). Biotechnology of wheat: cell selection and genetic engineering. Kyiv: Logos [in Ukrainian].

9. Mykhalska, S.I., Komisarenko, A.G. & Tishchenko, O.M. (2015). Development of methods Agrobacterium-mediated transformation of wheat. Faktory eksperymental'noi evoliucii orhanizmiv, 17, pp. 213-216 [in Ukrainian].

11. Agarwal, S., Loar, S., Steber, C. & Zale, J. (2009). Floral transformation of wheat. Methods in Mol. Biol., 478, pp. 105-113. https://doi.org/10.1007/978-1-59745-379-0_6

12. Ahmad, A., Zhong, H., Wang, W. & Sticklen, M. (2002). Shoot apical meristem: in vitro regeneration and morphogenesis in wheat (Triticum aestivum L). In vitro Cellular Developmental Biology Plant, 38, pp. 163-167. https://doi.org/10.1079/IVP2001267

13. Altpeter, F., Varshney, A., Abderhalden, O., Douchkov, D., Sautter, C., Kumlehn, J., Dudler, R. & Schweizer, P. (2005). Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant. Mol. Biol., 57, pp. 271-283. https://doi.org/10.1007/s11103-004-7564-7

14. Amar, S., Safi, H., Ayadi, M., Azaza, J., Khoudi, H., Masmoudi, K. & Brini, F. (2013). Analysis of the promoter activity of a wheat dehydrin gene (DHN-5) under various stress conditions. Austral. J. of Crop Sci., 7, No. 12, pp. 1875-1883.

15. Amoah, B., Wu, H., Sparksand, C. & Jones, H. (2001). Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. J. of Exp. Bot., 52, pp. 1135-1142. https://doi.org/10.1093/jexbot/52.358.1135

16. Berna, A. & Bernier, F. (1999). Regulation by biotic and abiotic stress of a wheat germ in gene encoding oxalate oxidase, a H2O2-producing enzyme. Plant Mol. Biol., 39, pp. 539-549. https://doi.org/10.1023/A:1006123432157

17. Bhalla, P., Ottenhof, H. & Singh M. (2006). Wheat transformation an update of recent progress. Euphytica, 149, pp. 353-366. https://doi.org/10.1007/s10681-006-9087-6

18. Bi, R., Jia, H., Feng, D. & Wang, H. (2006). Production and analysis of transgenic wheat (Triticum aestivum L.) with improved insect resistance by the introduction of cowpea trypsin inhibitor gene. Euphytica, 151, pp. 351-360. https://doi.org/10.1007/s10681-006-9157-9

19. Bilgin, M., Dedeoglu, D., Omirulleh, S., Peres, A., Engler, G., Inze, D. & Dudits, D. Cell division and S phase-dependent activity of wheat histone H4 promoter in transgenic maize plants. Plant Sci., 143, pp. 35-44. https://doi.org/10.1016/S0168-9452(99)00005-9

20. Binka, A., Orczyk, W. & Nadolska-Orczyk, A. (2012). The Agrobacterium-mediated transformation of common wheat (Triticum aestivum L.) and triticale (w Triticosecale Wittmack): role of the binary vector system and selection Cassettes. J. of Appl. Gen., 53, pp.1-8. https://doi.org/10.1007/s13353-011-0064-y

21. Chauhan, H. & Khuran, P. (2011). Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnol. J., 9, pp. 408-417. https://doi.org/10.1111/j.1467-7652.2010.00561.x

22. Chen, D. & Dale, P. (1992). A comparison of methods for delivering DNA to wheat: the application of wheat dwarf virus DNA to seeds with exposed apical meristems. Transgenic Res., 1, pp. 93-100. https://doi.org/10.1007/BF02513026

23. Cheng, M., Fry, J., Pang, S., Zhou, H., Hironaka, C., Duncan, D., Conner, T. & Wan, Y. (1997). Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol., 115, pp. 971-980. https://doi.org/10.1104/pp.115.3.971

24. Cheng, M., Hu, N., Layton, J., Liu, C. & Fry, J. (2003). Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cellular & Developmental Biology-Plant, 39, pp. 595-604. https://doi.org/10.1079/IVP2003471

25. Chugh, A. & Khurana, P. (2003). Herbicide-resistant transgenics of bread wheat (T. aestivum) and emmer wheat (T. dicoccum) by particle bombardment and Agrobacterium- mediated approaches. Current Sci., 84, pp. 78-83.

26. Chugh, A., Vikrant, A., Mahalakshmi, A. & Khurana, P. (2012). A novel approach for Agrobacterium-mediated germ line transformation of Indian bread wheat (Triticum aestivum) and Pasta wheat (Triticum durum). J. of Phytol., 4, No. 2, pp. 22-29.

27. Clemente, T. & Mitra, A. (2005). Genetic engineering of wheat: protocols and use to enhance stress tolerance.Genetically modified crops: their development, uses, and risks. New York: Haworth Press.

28. Cong, L., Wang, C., Chen, L., Liu, H., Yang, G. & He, G. (2009). Expression of phytoene synthase 1 and carotene desaturase CrtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.). J. Agric. Food Chem., 57, pp. 8652-8660. https://doi.org/10.1021/jf9012218

29. Cui, X., Zhang, Y., Zhao, F. et al. (2011). Molecular characterization and expression analysis of phosphate transporter gene TaPT2-1 in wheat (Triticum aestivum L.). Front. Agricult. China, 5, pp. 274-283. https://doi.org/10.1007/s11703-011-1101-7

30. Dan, Y., Armstrong, C.L., Dong, J., Feng, X., Fry, J.E., Keithly, G.E. & Martinell, B.J. (2009). Lipoic acid-a unique plant transformation enhancer. In Vitro Cellular and Developmental Biology-Plant, 45, pp. 630-638. https://doi.org/10.1007/s11627-009-9227-5

31. Ding, L., Li, S., Gao, J., Wang, Y., Yang, G. & He, G. (2009). Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Mol. Biol. Reports, 36, pp. 29-36. https://doi.org/10.1007/s11033-007-9148-5

32. Evrard, A., Meynard, D., Guiderdoni, E., Joudrier, P. & Gautier, M.F. (2007). The Promoter of the wheat puroindoline-a gene (PinA) exhibits a more complex pattern of activity than that of the PinB gene and is induced by wounding and pathogen attack in rice. Planta, 225, pp. 287-300. https://doi.org/10.1007/s00425-006-0347-4

33. Fellers, J., Guenzi, A. & Taliaferro, C. (1995). Factors affecting the establishment and maintenance of embryogenic callus and suspension cultures of wheat (Triticum aestivum L.). Plant Cell Reports, 15, pp. 232-237. https://doi.org/10.1007/BF00193726

34. Gao, X., Zhang, L., Zhou, S., Wang, C., Deng, X., Zhang, H., Yang, G., Javeed, H. & He, G. (2011). AtMYB12 gene: a novel visible marker for wheat transformation. Mol. Biol. Reports, 38, pp. 183-190. https://doi.org/10.1007/s11033-010-0093-3

35. Haliloglu, K. & Baenziger, P. (2003). Agrobacterium tumefaciens-mediated wheat transformation. Cereal Research Commun., 31, pp. 9-16.

36. Han, J., Lakshman, D.K., Galvez, L.C., Mitra, S., Baenziger, P.S. & Mitra, A. (2012). Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum. BMC Plant Biol., 12, pp. 23-33. https://doi.org/10.1186/1471-2229-12-33

37. Han, S., Oh, P., Kim, H. et al. (2006). Effects of antibiotics on suppression of Agrobacterium tumefaciens and plant regeneration from wheat embryo. J. Crop Sci. Biotechnol., 10, No. 2, pp. 92-98.

38. Harholt, J., Bach, I.C., Lind-Bouquin, S., Nunan, K.J. & Madrid, S.M. (2010). Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm. Plant Biotechnol. J., 8, pp. 351-362. https://doi.org/10.1111/j.1467-7652.2009.00490.x

39. He, Y., Jones, H.D., Chen, S., Chen, X.M., Wang, D.W., Li, K.X., Wang, D.S. & Xia, L.Q. (2010). Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J. Exp. Bot., 61, pp. 1567-1581. https://doi.org/10.1093/jxb/erq035

40. Hensel, G., Kastner, C., Oleszczuk, S., Riechen, J. & Kumlehn, J. (2009). Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. Int. J. of Plant Genomics, 2009, ID 835608, pp. 1-9. doi: http://dx.doi.org/10.1155/2009/835608.-P-1-9.

41. Hess, D., Dressler, K. & Nimmrichter, R. (1990). Transformation experiments by pipetting Agrobacterium into the spikelets of wheat (Triticum aestivum L.). Plant Sci., 72, pp. 233-244. https://doi.org/10.1016/0168-9452(90)90087-5

42. Hiei, Y., Ishida, Y. & Komari, T. (2014). Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Frontiers in Plant Sci., 5, pp. 1-11. https://doi.org/10.3389/fpls.2014.00628

43. Hu, T., Metz, S., Chay, C., Zhou, H.P., Biest, N., Chen, G., Cheng, M. & Feng, X. (2003). Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Reports, 21, pp. 1010-1019. https://doi.org/10.1007/s00299-003-0617-6

44. Jones, H., Doherty, A. & Wu, H. (2005). Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods, 1, pp. 1-5. https://doi.org/10.1186/1746-4811-1-5

45. Ke, X.-Y., McCormac, A.C., Harvey, A., Lonsdale, D., Dong-Fang, C. & Malcolm, C.E. (2002). Manipulation of discriminatory T-DNA delivery by Agrobacterium into cells of immature embryos of barley and wheat. Euphytica, 126, pp. 333-343. https://doi.org/10.1023/A:1019960309149

46. Khanna, H. & Daggard, G. (2003). Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Reports, 21, pp. 429-436. https://doi.org/10.1007/s00299-002-0529-x

47. Khurana, J., Chugh, A. & Khurana, P. (2002). Regeneration from mature and immature embryos and transient gene expression via Agrobacterium-mediated transformation in emmer wheat (Triticum diccocum Schuble). Indian J. of Exp. Biol., 40, pp. 1295-1303.

48. Kobayashi, F., Ishibashi, M. & Takumi, S. (2008). Transcriptional activation of Cor/Lea genes and increase in abiotic stress tolerance through expression of a wheat Dreb2 homolog in transgenic tobacco. Transgenic Res., 17, pp. 755-767. https://doi.org/10.1007/s11248-007-9158-z

49. Kovalchuk, N., Li, M., Wittek, F., Reid, N., Singh, R., Shirley, N., Ismagul, A., Eliby, S., Johnson, A., Milligan, A.S., Hrmova, M., Langridge, P. & Lopato, S. (2010). Defensin promoters as potential tools for engineering disease resistance in cereal grains. Plant Biotechnol. J., 8, pp. 47-64. https://doi.org/10.1111/j.1467-7652.2009.00465.x

50. Kovalchuk, N., Smith, J., Pallotta, M., Singh, R., Ismagul, A., Eliby, S., Bazanova, N., Milligan, A.S., Hrmova, M., Langridge, P. & Lopato, S. (2009). Characterization of the wheat endosperm transfer cell-specific protein TaPR60. Plant. Mol. Biol., 71, pp. 81-98. https://doi.org/10.1007/s11103-009-9510-1

51. Lamacchia, C., Shewry, P.R., Di Fonzo, N., Forsyth, J.L., Harris, N., Lazzeri, P.A., Napier, J.A., Halford, N.G. & Barcelo, P. (2001). Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. J. Exp. Bot., 52, pp. 243-250. https://doi.org/10.1093/jexbot/52.355.243

52. Langridge, P., Brettschneider, R., Lazzeri, P. & Lorz, H. (2002). Transformation of cereals via Agrobacterium and the pollen pathway: a critical assessment. Plant J., 2, pp. 631-638. https://doi.org/10.1111/j.1365-313X.1992.00631.x

53. Li, J., Zhao W., Li O. et al. (2005). RNA silencing of Waxy gene results in low levels of amylose in the seeds of transgenic wheat (Triticum aestivum L.). Acta Genetica Sinica, 32, pp. 846-854.

54. Liu, W., Zheng, M. & Konzak, C. (2002). Improving green plant production via isolated microspore culture in bread wheat (Triticum aestivum L.). Plant Cell Reports, 20, pp. 821-824. https://doi.org/10.1007/s00299-001-0408-x

55. Lonsdale, D., Lindup, S., Moisan, L. & Harvey, A. (1998). Using firefly luciferase to identify the transition from transient to stable expression in bombarded wheat scutellar tissue. Physiologia Plantarum, 102, pp. 447-453. https://doi.org/10.1034/j.1399-3054.1998.1020313.x

56. Mahalakshmi, A. & Khurana, P. (1995). Agrobacterium-mediated gene delivery in various tissues and genotypes of wheat (Triticum aestivum L.). J. of Biochem. and Biotechnol., 4, No. 2, pp. 55-59. https://doi.org/10.1007/BF03262953

57. McCormac, A.C., Wu, H., Bao, M., Wang, Y., Xu, R., Elliot, M.C. & Chen. D.F. (1998). The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated t-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Euphytica, 99, pp. 17-25. https://doi.org/10.1023/A:1018303102488

58. Mitic, N., Nikolic, R., Ninkovic, S. et al. (1998). Agrobacterium-mediated transformation and plant regeneration of Triticum aestivum L. Biologia Plantarum, 48, pp. 179-184. https://doi.org/10.1023/B:BIOP.0000033442.15611.7d

59. Moghaieb, R., El-Arabi, N., Momtaz, O. et al. (2010). Genetic transformation of mature embryos of bread (T. aestivum) and pasta (T. durum) wheat genotypes. GM Crops, 1, No. 2, pp. 87-93. https://doi.org/10.4161/gmcr.1.2.11172

60. Mooney, P., Goodwin, P., Dennis, E. & Llewelleyn, D. (1991). Agrobacterium tumefaciens-gene transfer into wheat tissues. Plant Cell Tissue Organ Culture, 25, pp. 209-218.

61. Ogawa, T., Kawahigashi, H., Toki, S. & Handa, H. (2008). Efficient transformation of wheat by using a mutated rice acetolactate synthase gene as a selectable marker. Plant Cell Reports, 27, pp. 1325-1331. https://doi.org/10.1007/s00299-008-0553-6

62. Opabode, J. (2006). Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol. and Mol. Biol. Review, 1, pp.12-20.

63. Ortiz, J.P., Reggiardo, M.I., Ravizzini, R.A., Altabe, S.G., Cervigni, G.D., Spitteler, M.A., Morata, M.M., Elias, F.E. & Vallejos, R.H. (1996). Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Reports, 15, pp. 877-881. https://doi.org/10.1007/BF00231579

64. Oszvald, M., Gardonyi, M., Tamas, C., Takaks, J., Jenes, B. & Tamas, L. (2008). Development and characterization of a chimaeric tissue-specific promoter in wheat and rice endosperm. In Vitro Cell. Dev. Biol. Plant, 44, pp. 1-7. https://doi.org/10.1007/s11627-007-9082-1

65. Oszvald, M., Kang, T., Tomoskozi, S. & Yang, M. (2008). Expression of cholera toxin B subunit in transgenic rice endosperm. Mol. Biotechnol., 40, pp. 261-268. https://doi.org/10.1007/s12033-008-9083-2

66. Ouellet, F., Vazquez-Tello, A. & Sarhan, F. (1998). The wheat Wes120 promoter is cold-inducible in both Monocotyledonous and Dicotyledonous species. FEBS Lett., 423, pp. 324-328. https://doi.org/10.1016/S0014-5793(98)00116-1

67. Patnaik, D. & Khurana, P. (2003). Genetic transformation of Indian bread (T. estivum) and pasta (T. durum) wheat by particle bombardment of mature embryo-derived calli. BMC Plant Biol., 3, pp. 5-15. https://doi.org/10.1186/1471-2229-3-5

68. Patnaik, D., Vishnudasan, D. & Khurana, P. (2006). Agrobacterium-mediated transformation of mature embryos of Triticum aestivum and Triticum durum. Current Sci., 91, pp. 307-317.

69. Peters, N., Ackerman, S. & Davis, E. (1999). A modular vector for Agrobacterium mediated transformation of wheat. Plant Mol. Biol. Reporter, 17, pp. 323-331. https://doi.org/10.1023/A:1007686408369

70. Piston, F., Marin, S., Hernando, A. & Barro, F. (2009). Analysis of the activity of a gamma-gliadin promoter in transgenic wheat and characterization of gliadin synthesis in wheat by MALDI-TOF during grain development. Mol. Breed., 23, pp. 655-667. https://doi.org/10.1007/s11032-009-9263-1

71. Potrykus, I. (1991). Gene transfer to plants: assessment of published approaches and results. Annual Rev. of Plant Physiol. and Plant Mol. Biol., 42, pp. 205-225. https://doi.org/10.1146/annurev.pp.42.060191.001225

72. Przetakiewicz, A., Karas, A., Orczyk, W. & Nadolska-Orczyk, A. (2004). Agrobacterium-mediated transformation of polyploid cereals: The efficiency of selection and transgene expression in wheat. Cell and Mol. Biol. Lett., 9, pp. 903-917.

73. Raja, N., Bano, A., Rashid, H., Chaudhry, Z. & Ilyas, N. (2010). Improving Agrobacterium mediated transformation protocol for integration of Xa21 gene in wheat (Triticum aestivum L.). Pakistan J. of Bot., 42, No. 5, pp. 3613-3631.

74. Rasco-Gaunt, S., Riley, A., Cannel, M., Barcelo, P. & Lazzeri, P. (2001). Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J. of Exp. Bot., 52, pp. 865-874. https://doi.org/10.1093/jexbot/52.357.865

75. Rashid, H., Afzal, A., Khan, M.H., Chaudhry, Z. & Malik, S.A. (2010). Effect of bacterial culture density and acetosyringone concentration on Agrobacterium-mediated transformation in wheat. Pakistan J. of Bot., 42, pp. 4183-4189.

76. Rashid, U., Ali, S., Ali, G., Ayub,N. & Masood, M. (2009). Establishment of an efficient callus induction and plant regeneration system in pakistani wheat (Triticum aestivum) cultivars. Electronic J. of Biotechnol., 12, pp. 4-5.

77. Razzaq, A., Hafiz, I., Mahmood, I. & Hussain, A. (2011). Development of in planta transformation protocol for wheat. African J. of Biotechnol., 10, No. 5, pp. 740-750.

78. Ryan, P.R., Raman, H., Gupta, S., Sasaki, T., Yamamoto, Y. & Delhaize, E. (2010). The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1. Plant J., 64, pp. 446-455. https://doi.org/10.1111/j.1365-313X.2010.04338.x

79. Sarker, R. & Biswas, A. (2002). In vitro plantlet regeneration and Agrobacterium-mediated genetic transformation of wheat (Triticum aestivum L.). Plant Tissue Culture, 12, No. 2, pp. 155-165.

80. Sawahel, W. & Hassan, A. (2002). Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol. Letters, 24, pp. 721-725. https://doi.org/10.1023/A:1015294319114

81. Schweizer, P. (2008). Tissue-specific expression of a defense-related peroxidase in transgenic wheat potentiates cell death in pathogen-attacked leaf epidermis. Mol. Plant Pathol., 9, pp. 45-57. https://doi.org/10.1111/j.1364-3703.2007.00446.x

82. Shaw, D. Gray, J. (2011). Visualisation of stromules in transgenic wheat expressing a plastid-targeted yellow fluorescent protein. Planta, 233, pp. 961-970. https://doi.org/10.1007/s00425-011-1351-x

83. Shewry, Р.R. (2009). Wheat. J. of Exp. Bot., 60, No. 6, pp. 1537-1553. https://doi.org/10.1093/jxb/erp058

84. Sparks, C., Doherty, A. & Jones, H. (2014). Genetic transformation of wheat via Agrobacterium-mediated DNA delivery. Methods Mol. Biol., 1099, pp. 235-250. https://doi.org/10.1007/978-1-62703-715-0_19

85. Stoger, E., Parker, M., Christou, P. & Casey, R. (2001). Pea legumin overexpressed in wheat endosperm assembles into an ordered paracrystalline matrix. Plant Physiol., 125, pp. 1732-1742. https://doi.org/10.1104/pp.125.4.1732

86. Stoykova, P. & Stoeva-Popova, P. (2011). PMI (manA) as a non antibiotic selectable marker gene in plant biotechnology. Plant Cell Tissue and Organ Culture, 105, pp. 141-148. https://doi.org/10.1007/s11240-010-9858-6

87. Supartana, P., Shimizu, T., Nogawa, M., Shioiri, H., Nakajima, T., Haramoto, N., Nozue, M. & Kojima, M. (2006). Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. J. of Biosci. and Bioengineer., 102, pp. 162-170. https://doi.org/10.1263/jbb.102.162

88. Takumi, S., Koike, A., Nakata, M., Kume, S., Ohno, R. & Nakamura, C. (2003). Cold-specific and light-stimulated expression of a wheat (Triticum aestivum L.) core gene wcor15 encoding a chloroplast-targeted protein. J. Exp. Bot., 54, pp. 2265-2274. https://doi.org/10.1093/jxb/erg247

89. Tao, L., Du, L., Xu, H. & Ye, X. (2011). Improvement of plant regeneration from immature embryos of wheat infected by Agrobacterium tumefaciens. Agricult. Sci. in China, 10, pp. 317-326. https://doi.org/10.1016/S1671-2927(11)60010-2

90. Trick, H. & Finer, J. (1997). SAAT: sonicationassisted Agrobacterium-mediated transformation. Transgenic Res., 6, pp. 329-336. https://doi.org/10.1023/A:1018470930944

91. Uze, M., Potrykus, I. & Sautter, C. (2000). Factors influencing T-DNA transfer from Agrobacterium to precultured immature wheat embryos (Triticum aestivum L.). Cereal Res. Commun., 28, pp. 17-23.

92. Vasil, I. (2007). Molecular genetic improvement of cereals: transgenic wheat (Triticum aestivum L.). Plant Cell Reports, 26, pp. 1133-1154. https://doi.org/10.1007/s00299-007-0338-3

93. Vishnudasan, D., Tripathi, M., Rao, U. & Khurana, P. (2005). Assessment of nematode resistance in wheat transgenic plants expressing potato proteinase inhibitor (pin2) gene. Transgenic Res., 14, pp. 665-675. https://doi.org/10.1007/s11248-005-5696-4

94. Wang, C. & Wei, Z. (2004). Embryogenesis and regeneration of green plantlets from wheat (Triticum aestivum) leaf base. Plant Cell Tissue & Organ Culture, 77, pp. 149-156. https://doi.org/10.1023/B:TICU.0000016818.58971.cc

95. Wang, Y., Xiao, X. & Zhang, A. (2002). Factors affecting Agrobacterium tumefaciens-mediated transformation of wheat (Triticum aestivum L.). Acta Genetica Sinica, 29, No. 3, pp. 260-265.

96. Wang, Y., Xu, M., Yin, G., Tao, L., Wang, D. & Ye X. (2009). Transgenic wheat plants derived from Agrobacterium-mediated transformation of mature embryo tissues. Cereal Res. Commun., 37, pp. 1-12. https://doi.org/10.1556/CRC.37.2009.1.1

97. Weeks, J.T., Koshiyama, K.Y., Maier-Greiner, U., Schaeffner, T. & Anderson, O.D. (2000). Wheat transformation using cyanamide as a new selective agent. Crop Sci., 40, pp. 1749-1754. https://doi.org/10.2135/cropsci2000.4061749x

98. Weir, B., Gu, X., Wang, M., Upadhyaya, N., Elliott, A. & Brettle, R. (2001). Agrobacterium tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. Functional Plant Biol., 28, pp. 807-818. https://doi.org/10.1071/PP99211

99. Wiley, P.R., Tosi, P., Evrard, A., Lovegrove, A., Jones, H.D. & Shewry, P.R. (2007). Promoter analysis and immunolocalization show that puroindolien genes are exclusively expressed in starchy endosperm cells of wheat grain. Plant. Mol. Biol., 64, pp. 125-136. https://doi.org/10.1007/s11103-007-9139-x

100. Wu, H., Doherty, A. & Jones, H. (2008). Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes. Transgenic Res., 17, pp. 425-436. https://doi.org/10.1007/s11248-007-9116-9

101. Wu, H., Doherty, A. & Jones, H. (2009). Agrobacterium-mediated transformation of bread and durum wheat using freshly isolated immature embryos. In Transgenic wheat, barley and oats (93-103), New York: Humana Press. https://doi.org/10.1007/978-1-59745-379-0_5

102. Wu, H., Sparks, C., Amoah, B. & Jones, H. (2003). Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Reports, 21, pp. 659-668.

103. Xia, G., Li, Z., He, C., Chen, H. & Brettell, R. (1999). Transgenic plant regeneration from wheat (Triticum aestivum L.) mediated by Agrobacterium tumefaciens. Acta Phytophysiol. Sinica, 25, pp. 22-28.

104. Xu, Z., Ni, Z., Liu, L., Nie, L., Li, L., Chen, M. & Ma, Y. (2008). Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Mol. Gen. Genomics, 280, pp. 497-508. https://doi.org/10.1007/s00438-008-0382-x

105. Xue, Z.Y., Zhi, D.Y., Xue, G.P., Zhang, H., Zhao, Y.X. & Xia, G.M. (2004). Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na/H antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na. Plant Sci., 167, pp. 849-859. https://doi.org/10.1016/j.plantsci.2004.05.034

106. Yang, B., Ding, L., Yao, L., He, G. & Wang, Y. (2008). Effect of seedling ages and inoculation durations with Agrobacterium tumefaciens on transformation frequency of the wheat wounded apical meristem. Mol. Plant Breed., 6, pp. 358-362.

107. Yao, X., Li, B. & Jia, J. (1993). A novel system for Agrobacterium-mediated transformation of wheat (Triticum aestivum L.) cells. Cell Res., 3, pp. 49-60. https://doi.org/10.1038/cr.1993.6

108. Yu, Y. & Wei, Z. (2008). Increased oriental armyworm and aphid resistance in transgenic wheat stably expressing Bacillus thuringiensis (Bt) endotoxin and Pinellia ternate agglutinin (PTA). Plant Cell Tissue and Organ Culture, 94, pp. 33-44. https://doi.org/10.1007/s11240-008-9384-y

109. Zale, J., Agarwal, S., Loar, S. & Steber, C. (2009). Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Reports, 28, pp. 903-913. https://doi.org/10.1007/s00299-009-0696-0

110. Zale, J., Borchardt-Wier, H., Kidwell, K. & Steber, C. (2004). Callus induction and plant regeneration from mature embryos of a diverse set of wheat genotypes. Plant Cell Tissue and Organ Culture, 76, pp. 277-281. https://doi.org/10.1023/B:TICU.0000009248.32457.4c

111. Zhao, T., Zhao, S., Chen, H., Zhao, Q., Hu, Z., Hou, B. & Xia, G. (2006). Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Reports, 25, pp. 1199-1204. https://doi.org/10.1007/s00299-006-0184-8

112. Zhao, X., Nie, X. & Xiao, X. (2013). Overexpression of a tobacco nitrate reductase gene in wheat (Triticum aestivum L.) increases seed protein content and weight without augmenting nitrogen supplying. PloS one, 8, No. 9, pp. 746-778. https://doi.org/10.1371/journal.pone.0074678

113. Zhou, H., Berg, J., Blank, S., Chay, C., Chen, G. & Eskelsen, S. (2003). Field efficacy assessment of transgenic roundup ready wheat. Crop Sci., 43, pp. 1072-1075. https://doi.org/10.2135/cropsci2003.1072