Фізіологія рослин і генетика 2016, том 48, № 3, 257-266, doi: https://doi.org/10.15407/frg2016.03.257

Генетична інженерія та клітинна селекція для підвищення осмотолерантності культурних рослин

Тищенко О.М.1, Михальська С.І.1, Моргун Б.В.1,2

  1. Інститут фізіології рослин і генетики Національної академії наук України 03022 Київ, вул. Васильківська, 31/17
  2. Інститут клітинної біології та генетичної інженерії Національної академії наук України 03143 Київ, вул. Академіка Заболотного, 148

Розглянуто сучасний стан вивчення епігенетичної регуляції експресії генів культурних рослин за стресів, спричинених водним дефіцитом. Наведено результати досліджень відділу генетичної інженерії Інституту фізіології рослин і генетики НАН України щодо отримання осмотолерантних форм із використанням дволанцюгового РНК-супресора гена проліндегідрогенази та результати генетичного поліпшення рослин методом клітинної селекції.

Ключові слова: siРНК, генетична трансформація, клітинна селекція, осмотичний стрес, кукурудза, соняшник, пшениця, тютюн

Фізіологія рослин і генетика
2016, том 48, № 3, 257-266

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Bavol, A.V.(2015). Development of biotechnology for obtaining wheat plants resistant to stress factors Visn. NAN Ukrainy, No. 6, pp. 61-67 [in Ukrainian]. https://doi.org/10.15407/visn2015.06.061

2. Goncharuk, O.M., Bavol, A.V. & Dubrovna, O.V. (2014). Increase of Frequency of Wheat Pelvic Cultures Regeneration for Agrobacterium-Mediated Transformation.Visn. Ukr. t-va henetykiv i selektsioneriv, 12, No. 2, pp. 159-165 [in Ukrainian].

3. Voronova, S.S., Goncharuk, O.M., Bavol, A.V. & Dubrovnaya, O.V. (2015). Genetic transformation of soft wheat using vector constructs containing proline metabolism genes. Visn. Ukr. t-va henetykiv i selektsioneriv, 13, No. 1, pp. 28-33 [in Ukrainian].

4. Komisarenko, A.G., Malina, A.E., Mikhalskaya, S.I., Bronnikova, L.I. & Tishchenko, E.N.(2008). Influence of ultrasound on induction of regeneration of inbred lines of sunflower. Faktory eksperym. evolyutsiyi orhanizmiv, 5, pp. 278-282 [in Ukrainian].

5. Komisarenko, A.G., Mikhalskaya, S.I., Kurchy, V.M., Sytnik, S.K., Sergeeva, L.E.& Tishchenko, E.N.( 2015). Physiological and biochemical characteristics of transgenic sunflower and corn plants with a double-stranded RNA suppressor of the proline dehydrogenase gene. Fiziol. rast. genet., 47, No. 2, pp. 160-166 [in Russian].

6. Komisarenko, A.G., Mikhalskaya, S.I., Kurchiy, V.M. & Sergeeva, L.E. (2015). Analysis of transgenic corn and sunflower plants with increased susceptibility to water stress. Faktory eksperym. evolyutsiyi orhanizmiv, 17, pp. 189-192 [in Ukrainian].

7. Komisarenko, A.G., Mikhalskaya, S.I., Malina, A.E. & Tishchenko, E.N. (2009). Influence of sodium thiosulfate and ultrasound on the induction of in vitro regeneration of inbred lines of sunflower (Heliantus annuus L.). Visn. Ukr. t-va henetykiv i selektsioneriv, 7, No. 1, pp.31-37 [in Russian].

8. Kuznetsov, V.V. & Shevyakova, N.I. (1999). Proline under stress: biological role, metabolism, regulation. Fiziologiya rasteniy, 46, No. 2, pp. C. 321-336 [in Russian].

9. Matveeva, A.Yu., Sakalo, V.D., Kurchiy, V.M. & Tishchenko, E.N. (2010). Activity of saccharosynthase and invertase of morphogenic and non-morphogenous calli obtained from unripe maize embryos (Zea mays L.) infected with Agrobactetium tumefaciens. Visn. Ukr. t-va genetikiv i selektsioneriv. 8, pp. 18-24 [in Russian].

10. Mikhalskaya, S.I., Matveeva, A.Yu., Sergeeva, L.E., Kochetov, A.V. & Tishchenko, E.N. (2013). Study of free proline content in maize plants transformed in planta using LBA4404 carrying pBi2E with double-stranded RNA suppressor of the proline dehydrogenase gene. Izv. Samar. nauch. tsentra RA, 15, No. 3, pp. 1662-1665 [in Russian].

11. Mikhalskaya, S.I., Sergeeva, L.E., Matveeva, A.Yu., Kobernik, N.I., Kochetov, A.V., Tishchenko, E.N. & Morgun, V.V.( 2014). Increasing the content of free proline in osmotolerant transgenic maize plants with double-stranded RNA suppressor of the proline dehydrogenase gene. Fiziol. rast. genet., 46, No. 6, pp. 482-489 [in Russian].

12. Morgun, V.V. & Tishchenko, E.N. (2014). Molecular biotechnology to improve the resistance of cultivated cereals to osmotic stress. Kyiv: Logos [in Russian].

13. Morgun, V.V., Kordyum, V.A., Larchenko, E.A. &Tkachenko, L.V. (1980). Transfer of hereditary traits using exogenous DNA in maize. Molekul. biologiya, No. 26, pp. 9-12 [in Russian].

14. Morgun, V.V., Tishchenko, E.N., Mikhalskaya, S.I., Komisarenko, A.G. & Sergeeva, L.E. (2015). Development of technology of short interfering siRNAs to increase the osmotolerance of transgenic maize and wheat plants. Materials of the II Int. scientific conf. Genetics and biotechnology of the XXI century: problems, achievements, prospects. (p.105 ), Minsk [in Russian].

15. Radyukina, N.L., Shashukova, A.V., Shevyakova, N.I. & Kuznetsov, V.V. (2008). Participation of proline in the system of antioxidant protection of sage under the action of NaCl and paraquat . Fiziologiya rasteniy, 55, pp. 721-730 [in Russian]. https://doi.org/10.1134/S1021443708050087

16. Sergeeva, L.E. (2013). Cell selection with heavy metal ions to obtain plant genotypes with complex resistance to abiotic stresses. Kyiv: Logos [in Russian].

17. Sergeeva, L.E., Komisarenko, A.G. Bronnikova, L.I. Mikhalskaya, S.I. & Tishchenko, E.N. (2013). The content of free proline in the tissues of sunflower in the implementation of the morphogenetic potential in vitro. Biotekhnologiya, 6, No.1, pp.113-118 [in Russian]. https://doi.org/10.15407/biotech6.01.113

18. Sergeeva, L.E., Mikhalskaya, S.I., Kurchiy, V.M. & Tishchenko, E.N. (2014). Changes in the content of free proline in shoots and roots of maize seedlings in the initial stage of lethal osmotic stresses. Faktory eksperym. evolyutsiyi orhanizmiv, 15, pp. 133-136 [in Russian].

19. Sergeeva, L.E., Mikhalska, S.I., Kurchiy, V.M. & Tishchenko, E.N. (2015). Vmist vilnogo prolinu in seedlings of maize, yak demonstration of cleavage reactions to the lethal osmotic stresiv in vitro. Fiziol. rast. genet., 47, No. 6, pp.491-496. [in Russian].

20. Tishchenko, E.N. (2013). Genetic engineering using L-proline metabolism genes to increase plant osmotolerance. Fiziol. rast. genet., 45, No.6, pp. 488-500 [in Russian].

21. Tishchenko, E.N., Komisarenko, A.G., Mikhalskaya, S.I., Sergeeva, L.E., Adamenko, N.I., Morgun, B.V. & Kochetov, A.V. ( 2014). Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.) in vitro and in planta using strain LBA4404 carrying the pBi2E plasmid with a double-stranded RNA suppressor of the proline dehydrogenase gene. Cytologiya i genetika, 48, No. 4, pp. 19-30. [in Russian] https://doi.org/10.3103/S0095452714040094

22. Tishchenko, E.N. & Morgun ,B.V.(2015). Genetic engineering for increasing the osmotolerance of cultivated cereal plants using the DREB / ABF transcription factor genes. Fiziol. rast. genet., 47, No. 5, pp. 371-392 [in Russian].

23. Tishchenko, E.N., Sakalo, V.D., Matveeva, A.Yu., Kurchiy, V.M., Morgun, B.V. & Kochetov, A.V. (2011). Metabolism of sucrose in the early stages of ontogenesis of maize (Zea mays L.), transformed in planta with unarmed strains of Agrobacterium tumefaciens. Biotekhnologiya, 4, No. 3, pp. 64-73 [in Russian].

24. Chumakov, M.I., Horn, N.A., Velikov, V.A., Tarnov, V.S. & Volokhina, I.V. (2006). Transformation of corn by inoculation with agrobacteria of pistillate yarns in planta. Genetika, 42, No. 8, pp.1083-1088. [in Russian]

25. Pat. 33961 Ukraine, IPC A01H 1/04, A01H 4/00. A method for selecting cell lines of plants with a changed type of nitrate reductase and the character of the absorption of nitrates, Sergeeva L.E., Michalskaya S.I., Tishchenko O.M., Publ. 25.07.2008 [in Ukrainian]. https://doi.org/10.1071/ASv25n4toc

26. Pat. 97229 Ukraine, IPC A01H 1/04, A01H 4/00. Method of selection of transgenic plants with increased level of resistance to water stress, Sergeeva, L.E., Komisarenko, A.G., Michalskaya, S.I., Tishchenko, O.M., Publ. 10.03.2015 [in Ukrainian].

27. Pat. 86108 Ukraine, IPC A01H 1/04, A01H 4/00. Method of application of Agrobacterium-mediated transformation in planta for the production of transgenic sunflower plants (Helianthus annuus L.), Komisarenko, A.G., Michalskaya, S.I., Tishchenko, O.M., Publ. 10.12.2013 [in Ukrainian].

28. Pat. 77323 Ukraine, IPC A01H 1/04, A01H 4/00. Methods for obtaining plants-regenerants from segments of the nodal zone of shoots using the Agrobacterium-mediated corn transformation method, Michalskaya, S.I., Tishchenko, O.M., Adamenko, N.I., Morgun, B.V., Publ. 11.02.2013 [in Ukrainian].

29. Pat. 77331 Ukraine, IPC A01H 1/04, A01H 4/00. Method for producing transgenic maize plants using Agrobacterium-mediated transformation in planta, Matveyeva, O.Yu., Tishchenko, O.M., Morgun, B.V., Publ. 11.02.2013 [in Ukrainian].

30. Pat. 64611 Ukraine, IPC A01H 1/04, A01H 4/00. Method of estimating the morphogenetic potential of sunflower tissues by the level of endogenous proline, Sergeeva, L.E., Mikhalska, S.I., Komissarenko, A.G., Bronnikova, L.I., Tishchenko, O.M., Publ. 10.11.2011 [in Ukrainian].

31. Pat. 40142 Ukraine, IPC A01H 1/04, A01H 4/00. A method for increasing the morphogenetic potential of in vitro genotypes of sunflower with a low regenerative capacity, Mikhalskaya, S.I., Sergeeva, L.E., Komisarenko, A.G., Malina, A.E., Tishchenko, O.M., Publ. 25.03.2009 [in Ukrainian].

32. Pat. 81752 Ukraine, IPC A01H 1/04, A01H 4/00. A method for increasing the regenerative capacity of soft wheat poppy cultures resistant to Gaeumannomyces Graminis Var. Tritici and water deficit, Dubrovna, O.V., Bavol, A.V., Zinchenko, M.O., Publ. 10.07.2013 [in Ukrainian].

33. Borsani, O., Zhu, J., Verslues, E.P., Sunkar, R. & Zhu, J.K. (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 123 pp. 1279-1291. https://doi.org/10.1016/j.cell.2005.11.035

34. Cheng, M., Lowe, B.A., Spenser, T.M., Ye.X. & Armstrong, C. L. (2004). Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In vitro Cell. Dev. Biol.- Plant, 40, No. 1, pp. 31-35. https://doi.org/10.1079/IVP2003501

35. Hamilton, A. & Baulcombe, D.C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 286, pp. 950-952. https://doi.org/10.1126/science.286.5441.950

36. Miller, G., Stein, H., Honig, A., Kapulnik, Y. & Zilberstein, A. (2005). Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate proline accumulation. Planta, 222, No. 1, pp. 70-79. https://doi.org/10.1007/s00425-005-1518-4

37. Pospisilova, J., Haisel, D. & Vankova, R. (2011). Responses of transgenic tobacco plants with increased proline content to drought and/or heat stress. AJPS., 2, No. 3, pp. 318-324. https://doi.org/10.4236/ajps.2011.23036

38. Servet, C., Ghelis, T., Richard, L., Zilberstein, A. & Savoure, A. (2012). Proline dehydrogenase: a key enzyme in controlling cellular homeostasis. Front Biosci., 1, No. 17, pp. 607-620. https://doi.org/10.2741/3947

39. Szabados, L. & Savoure, A. (2009). Proline: a multifunctional amino acid. Trends Plant Sci., 15, No. 2, pp. 89-97. https://doi.org/10.1016/j.tplants.2009.11.009

40. Wolffe, A.P. & Matzke, M.A. (1999). Epigenetics: regulation through repression. Science, 286, pp. 481-486. https://doi.org/10.1126/science.286.5439.481