Досліджено участь оксиду азоту (NO) і пероксиду водню в індукуванні теплостійкості проростків пшениці (Triticum aestivum L.) дією екзогенних стресових фітогормонів — жасмонової (ЖАК) і саліцилової (СК) кислот. Установлено, що 24-годинна обробка проростків ЖАК і СК концентраціями 1 і 10 мкМ підвищує їх виживаність після дії потенційно летального теплового стресу (46 °С, 10 хв). Під впливом обох фітогормонів у коренях проростків транзиторно дещо підвищувався вміст пероксиду водню з максимумом через 30 хв після початку обробки. Вміст оксиду азоту під впливом ЖАК і СК збільшувався істотніше й спостерігався протягом 2 год з моменту початку обробки проростків. Передобробка антиоксидантом диметилтіосечовиною (ДМТС) нівелювала ефект підвищення вмісту NO в коренях, спричинюваний ЖАК і СК. За попереднього впливу на проростки ДМТС, як і за їх передобробки скавенжером оксиду азоту PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) та інгібітором NO-синтази L-NAME (NG-nitro-L-arginine methyl ester), помітно пригнічувався розвиток теплостійкості, індукований дією ЖАК і СК. Зроблено висновок про роль NO і пероксиду водню в процесах ЖАК- і СК-індукованого розвитку теплостійкості проростків пшениці.
Ключові слова: Triticum aestivum L., jasmonic acid, salicylic acid, nitric oxide, hydrogen peroxide, signals transduction, heat resistance
Повний текст та додаткові матеріали
У вільному доступі: PDFЦитована література
1. Karpets, Yu.V., Kolupaev, Yu.E. &Vayner, A.A. (2015). Functional interaction between nitric oxide and hydrogen peroxide during formation of wheat seedling induced heat resistance. Russ. J. Plant Physiol., 62 (1), pp. 65-70. https://doi.org/10.1134/S1021443714060090
2. Karpets, Yu.V., Kolupaev, Yu.E., Lugovaya, A.A. & Oboznyi, A.I. (2014). Effect of jasmonic acid on the pro-/antioxidant system of wheat coleoptiles as related to hyperthermia tolerance. Russ. J. Plant Physiol., 61 (3), pp. 339-346. https://doi.org/10.1134/S102144371402006X
3. Karpets, Yu.V., Kolupaev, Yu.E., Yastreb, T.O. & Oboznyi, A.I. (2015). Effects of NO-status modification, heat hardening, and hydrogen peroxide on the activity of antioxidant enzymes in wheat seedlings. Russ. J. Plant Physiol., 62 (3), pp. 292-298. https://doi.org/10.1134/S1021443715030097
4. Kolupaev, Yu.E., Karpets, Yu.V., & Dmitriev, A.P. (2015). Signal mediators in plants in response to abiotic stress: calcium, reactive oxygen and nitrogen species. Cytol. Genet., 49 (5), pp. 338-348. https://doi.org/10.3103/S0095452715050047
5. Kolupaev, Yu.E. & Yastreb, T.O. (2013). Stress-protective effects of salicylic acid and its structural analogues. Fisiol. rast. genet., 45, No. 2, pp. 113-126. [in Russian].
6. Kolupaev Yu.E., Yastreb T.O., Shvidenko, N.V. & Karpets, Yu.V. (2012). Induction of heat resistance of wheat coleoptiles by salicylic and succinic acids: connection of the effect with the generation and neutralization of reactive oxygen species. Appl. Biochem. Microbiol., 48 (5), pp. 500-505. https://doi.org/10.1134/S0003683812050055
7. Mamenko, T.P. & Royk, L.V. (2008). Influence of salicylic acid on the activity of antioxidant processes in winter wheat under different water conditions. Fisiologia i biokhimia kult. rastenij, 40, No. 1, pp. 69-77 [in Ukrainian].
8. Yarullina, L.G., Troshina, N.B., Cherepanova, E.A., Zaikina, E.A. & Maksimov, I.V. (2011). Salicylic and jasmonic acids in regulation of the proantioxidant state in wheat leaves infected by Septoria nodorum Berk. Appl. Biochem. Microbiol., 47 (5), pp. 549-555. https://doi.org/10.1134/S0003683811050176
9. Babenko, L.M., Kosakivska, I.V. & Skaterna, T.D. (2015). Jasmonic acid: role in biotechnology and the regulation of plants biochemical processes. Biotechnol. Acta, 8 (2), pp. 36-51. https://doi.org/10.15407/biotech8.02.036
10. Bartoli C.G., Casalongueb C.A., Simontacchia, M., Marquez-Garciac, B. & Foyer, C.H. (2013). Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environ. Exp. Bot., 94, pp. 73-88. https://doi.org/10.1016/j.envexpbot.2012.05.003
11. Dubovskaya, L.V., Bakakina, Y.S., Kolesneva, E.V. Sodel, D.L., McAinsh, M.R., Hetherington, A,M. & Volotovski, I.D. (2011). cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1. New Phytol., 191(1), pp. 57-69. https://doi.org/10.1111/j.1469-8137.2011.03661.x
12. Gemes, K., Poor, P., Horvath, E., Kolbert, Z., Szopko, D., Szepesi, A. &Tari, I. (2011). Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol. Plant., 142(2), pp. 179-192. https://doi.org/10.1111/j.1399-3054.2011.01461.x
13. Hamayun, M., Khan, S.A., Shinwari, Z.K., Khan, A.L., Ahmad, N. & Lee, I.-J. (2010). Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean. Pakistan J. Bot., 42 (2), pp. 977-986.
14. Hsu Y.Y. & Kao C.H. (2011). Nitric oxide is involved in methyl jasmonate induced lateral root formation in rice. Crop. Environ. Bioinform., 8, pp. 160-167.
15. Huang, X., Stettmaier, K., Michel, C. Hutzler, P., Mueller, M.J. & Durner, J. (2004). Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta, 218 (6), pp. 938-946. https://doi.org/10.1007/s00425-003-1178-1
16. Ismail, A., Riemann, M. & Nick, P. (2012).The jasmonate pathway mediates salt tolerance in grapevines. J. Exp. Bot., 63 (5), pp. 2127-2139. https://doi.org/10.1093/jxb/err426
17. Joseph, B., Jini, D. & Sujatha, S. (2010). Insight into the role of exogenous salicylic acid on plants growth under salt environment. Asian. J. Crop. Sci., 2, pp. 226-235. https://doi.org/10.3923/ajcs.2010.226.235
18. Klepper, L. (1991). NOx evolution by soybean leaves treated with salicylic acid and selected derivatives. Pest. Biochem. Physiol., 39, pp. 43-48. https://doi.org/10.1016/0048-3575(91)90212-5
19. Liu, S., Dong, Y., Xu, L. & Kong, J. (2014). Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Grow. Regul., 73 (1), pp. 67-78. https://doi.org/10.1007/s10725-013-9868-6
20. Mur, L.A.J., Prats, E., Pierre, S., Hall, M.A. & Hebelstrup, K.H. (2013). Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Frontiers Plant Sci., 4, p. 215. https://doi.org/10.3389/fpls.2013.00215
21. Neill, S., Bright, J., Desikan, R., Hancock, J., Harrison, J. & Wilson, I. (2008). Nitric oxide evolution and perception. J. Exp. Bot., 59 (1), pp. 25-35. https://doi.org/10.1093/jxb/erm218
22. Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., Hishinuma, H., Senzaki, E., Yamagoe, S., Nagata, K., Nara, M., Suzuki, K., Tanokura, & Kuchitsu, M. (2008). Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J. Biol. Chem., 283, pp. 8885-8892. https://doi.org/10.1074/jbc.M708106200
23. Sagisaka, S. (1976). The occurrence of peroxide in a perennial plant, Populus gelrica. Plant Physiol., 57 (2), pp. 308-309. https://doi.org/10.1104/pp.57.2.308
24. Sawada, H., Shim, I. & Usui, K. (2006). Induction of benzoicacid2-hydroxylase and salicylic acid biosynthesis - Modulation by salt stress in rice seedlings. Plant Sci., 171(2), pp. 263-270. https://doi.org/10.1016/j.plantsci.2006.03.020
25. Shana, C. & Liang, Z. (2010). Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci., 178, pp. 130-139. https://doi.org/10.1016/j.plantsci.2009.11.002
26. Shan, C., Zhou, Y. & Liu, M. (2015). Nitric oxide participates in the regulation of the ascorbate-glutathione cycle by exogenous jasmonic acid in the leaves of wheat seedlings under drought stress. Protoplasma, 252 (5), pp. 1397-1405. https://doi.org/10.1007/s00709-015-0756-y
27. Siddiqui, M.H., Al-Whaibi, M.H., Ali, H.M., Sakran, A.M., Basalah, M.O. & AlKhaishany, M.Y.Y. (2013). Mitigation of nickel stress by the exogenous application of salicylic acid and nitric oxide in wheat. Aust. J. Crop. Sci., 7 (11), pp. 1780-1788.
28. Tewari, R.K. & Paek, K.Y. (2011). Salicylic acid-induced nitric oxide and ros generation stimulate ginsenoside accumulation in Panax ginseng roots. J. Plant Grow. Regul., 30 (4), pp. 396-404. https://doi.org/10.1007/s00344-011-9202-3
29. Vital, S.A., Fowler, R.W., Virgen, A., Gossett, D.R., Banks, S.W. & Rodriguez, J. (2008). Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. Environ. Exp. Bot., 62(91), pp. 60-68. https://doi.org/10.1016/j.envexpbot.2007.07.006
30. Wang, L.J. & Li, S.H. Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci., 2006, 170(4), pp. 685-694. https://doi.org/10.1016/j.plantsci.2005.09.005
31. Wasternack, C. & Hause, B. (2013). Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot., 111 (6), pp. 1021-1058. https://doi.org/10.1093/aob/mct067
32. Xu, M.J., Dong, J.F. & Zhang, X.B. (2008). Signal interaction between nitric oxide and hybrogen peroxide in heat shock-induced hypericin production of Hypericum perforatum suspension cells. Sci. China. Ser. C: Life Sci., 51 (8), pp. 676-686. https://doi.org/10.1007/s11427-008-0095-8
33. Zhang ,A., Jiang, M., Zhang, J., Ding, H., Xu, S., Hu, X. & Tan, M. (2007). Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leave. New Phytol., 175(1), pp. 36-50. https://doi.org/10.1111/j.1469-8137.2007.02071.x
34. Zhou, B., Guo, Z., Xing, J. & Huang, B. (2005). Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J. Exp. Bot., 56, pp. 3223-3228. https://doi.org/10.1093/jxb/eri319