Fiziol. rast. genet. 2019, vol. 51, no. 2, 95-113, doi:

Reduction of phytate content as a means of barley biofortification on grain mineral composition

Rybalka O.I.1,2, Schwartau V.V.2, Polishchuk S.S.1, Morgun B.V.2,3

  1. Plant Breeding and Genetics Institute—National Center of Seed and Cultivar Investigation, National Academy of Agricultural Sciences of Ukraine 3, Ovidiopolska Road, 365036, Odesa, Ukraine
  2. Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17, Vasylkivska St.,  03022, Kyiv, Ukraine
  3. Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine 148, Akad. Zabolotnoho St., 03143, Kyiv, Ukraine

The key to the organism of animals and humans the mineral phosphorus in cereals and legumes in two thirds (~65—85 %) of the total content is bound in the form of phytic acid (phytate) and inaccessible to digestion. Undiluted organic phosphorus in the form of phytate, which is excreted from the body with feces, creates an ecological problem, first of all, the quality of drinking water deterioration. The article presents literary data on the genotypes of the main grain crops and, in particular, barley with genetically controlled low content of this substance in the grain. More than 20 low-content phytate mutants are known in the barley culture, which represent at least six different lpa-loci, each of which has a different effect on the content of organic and mineral phosphorus in the grain. It has been shown that the selection of lpa-varieties of this culture requires the necessity of using special laboratory methods for controlling lpa-mutations and assessing their effects in breeding populations. The obtained data confirmed that the lpa-mutant lines, even without pre-selection, are not essentially inferior to lines with wild-type alleles. It has been shown that the creation of grain cereals with low content in the grain of the phytates opens up fundamentally different possibilities of production of high quality meat, along with a decrease in the pollution of the environment with phosphates. Based on the analysis of literary sources, in which the results of studies on feeding animals of different ration types with low-phytate and common barley, the efficiency of phosphate utilization was found to be significantly higher than normal. In addition, the feeding of animals with low-phytate barley helps to reduce emissions of non-utilizable phosphates with feces, improves the utilization of multivalent cations in feeds. It has been shown that the creation of low-phytate barley varieties based on lpa-mutations can significantly improve the efficiency of the assimilation (bioavailability) of phosphorus from barley grain by humans and animals and reduce the harmful load of the environment by phosphates.

Keywords: barley, phytates, phosphorus, lpa-mutations, biofortification

Fiziol. rast. genet.
2019, vol. 51, no. 2, 95-113

Full text and supplemented materials

Free full text: PDF  


1. Berdanier, C., Dwyer, J. & Herber, D. (2013). Handbook of Nutrition and Food (3rd ed.). CRC Press, p. 199. ISBN 978-1-4665-0572-8. Retried 3 July 2016.

2. Harland, B. & Morris, E. (1995). Phytate: a good of bad food component? Nutr. Res., 19, pp. 947-961.

3. Horii, S., Matsuno, T., Tagomor, J., Mukai, M., Adhikari, D. & Kubo, M. (2013). Isolation and identification of phytate-degrading bacteria and their contribution to phytate mineralization in soil. J. Gen. Appl. Microbiol., 59, pp. 353-360.

4. Li, Y., Ledoux, D., Veum, T., Raboy, V., Zyla, K. & Wikiera, A. (2001). Bioavailability of phosphorus in low phytic acid barley. J. Appl. Poultry Res., 10, pp. 86-91.

5. Dersjant-Li, Y., Awati, A., Schulze, H. & Partridge, G. (2013). Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors (Willey on line

6. Awad, G., Danial, E., Kassem, S., Abdelkader, M., Hanafi, E., El-Hawary, Z., Hegazy, E. & Helal, M. (2013). A novel phytase enzyme for poultry feed. World Appl. Sci. Journal, 26, pp. 194-199.

7. Nagashima, T., Tange, T. & Anazawa, H. (1999). Dephosphorilation of phytate by using the Aspergillus niger phytase with high affinity for phytate. Appl. Environmental Microbiol., 65, pp. 4682-4684.

8. Dorsch, J., Cook, A., Young, K., Anderson, J., Bauman, A., Volkmann, C., Murthy, P. & Raboy, V. (2003). Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry, 62, pp. 691-706.

9. Larson, S., Young, K., Cook, A., Blake, T. & Raboy, V. (1998). Linkage mapping of two mutations that reduce phytic acid content of barley grain. Theor. Appl. Genet., 97, pp. 141-146.

10. Oliver, R., Yang, C., Hu, G., Raboy, V. & Zhang, M. (2009). Identification of PCR-based DNA markers flanking three low phytic acid mutant loci in barley. J. Plant Breed. Crop Sci., 1, pp. 87-93.

11. Kim, S., Andaya, C., Goyal, S. & Tai, T. (2008). The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism. Theor. Appl. Genet., 117, pp. 769-779.

12. Larson, S., Rutger, J., Young, K. & Raboy, V. (2000). Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid 1 mutation. Crop Sci., 40, pp. 1397-1405.

13. Liu, Q., Xu, X., Ren, X., Fu, H., Wu, D. & Shu, Q. (2007). Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Theor. Appl. Genet., 114, pp. 803-814.

14. Ren, X., Liu, Q., Fu, H., Wu, D. & Shu, Q. (2007). Density alteration of nutrient elements in rice grains of a low phytate mutant. Food Chem., 102, pp. 1400-1406.

15. Zhao, H., Liu, Q., Fu, H., Xu, X., Wu, D. & Shu, Q. (2008). Effect of non-lethal low phytic acid mutations on grain yield and seed viability in rice. Field Crops Res., 108, pp. 206-211.

16. Zhao, H., Liu, Q., Ren, X., Wu, D. & Shu, Q. (2008). Gene identification and allele-specific marker development for two allelic low phytic acid mutations in rice (Oryza sativa L.). Mol. Breed., 22, pp. 603-612.

17. Guttieri, M., Bowen, D., Dorsch, J., Raboy, V. & Souza, E. (2003). Identification and characterization of a low phytic acid wheat. Crop Sci., 44, pp. 418-424.

18. Pilu, R., Panzeri, D., Gavazzi, G., Rasmussen, S., Consonni, G. & Nielsen, E. (2003). Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241). Theor. Appl. Genet., 107, pp. 980-987.

19. Raboy, V., Gerbasi, P., Young, K., Stoneberg, S., Pickett, S., Bauman, A., Murthy, P., Sheridan, W. & Ertl, D. (2000). Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol., 124, pp. 355-368.

20. Shi, J., Wang, H., Wu, Y., Hazebroek, J., Meeley, R. & Ertl, D. (2003). The maize low-phytic acid mutant 1pa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol., 131, pp. 507-515.

21. Shi J., Wang, H., Hazebroek, J., Ertl, D. & Harp, T. (2005). The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J., 42, pp. 708-719.

22. Shi, J., Wang, H., Schellin, K., Li, B., Faller, M., Stoop, J., Meeley, R., Ertl, D., Ranch, J. & Glassman, K. (2007). Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat. Biotechnol., 25, pp. 930-937.

23. Hitz, W., Carlson, T., Kerr, P. & Sebastian, S. (2002). Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol., 128, pp. 650-660.

24. Wilcox, J., Premachandra, G., Young, K. & Raboy, V. (2000). Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci., 40, pp. 1601-1605.

25. Yuan, F., Zhao, H., Ren, X., Zhu, S., Fu, X. & Shu, Q. (2007). Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.). Theor. Appl. Genet., 115, pp. 945-957.

26. Campion, B., Sparvoli, F., Doria, E., Tagliabue, G., Galasso, I., Fileppi, M., Bollini, R. & Nielsen, E. (2009). Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor. Appl. Genet., 118, pp. 1211-1221.

27. Stevenson-Paulik, J., Bastidas, R., Chiou, S., Frye, R. & York, J. (2005). Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc. Natl. Acad. Sci. USA. 102, pp. 12612-12617.

28. Kim, S., Andaya, C., Newman, J., Goyal, S. & Tai, T. (2008). Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. Theor. Appl. Genet., 117, pp. 1291-1301.

29. Xu, X., Zhao, H., Liu, Q., Frank, T., Engel, K., An, G. & Shu, Q. (2009). Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theor. Appl. Genet., 119, pp. 75-83.

30. Gillman, J., Pantalone, V. & Bilyeu, K. (2009). The low phytic acid phenotype in soybean line CX1834 is due to mutations in two homologs of the maize low phytic acid gene. Plant Genome, 2, pp. 179-190.

31. Ye, H., Zhang, X.-Q., Broughton, S., Westcott, S., Wu, D., Lance, R. & Li, C. (2011). A nonsense mutation in a putative sulphate transporter gene results in low phytic acid barley. Funct. Integr. Genomics, 11, pp. 103-110. doi 10.1007/s10142-011-0209-4

32. Rolinsky, V., Eckstein, P., Raboy, V., Rossnagel, B. & Scoles, G. (2007). Molecular marker development and linkage analysis in three low phytic acid barley (Hordeum vulgare) mutant lines. Mol. Breed., 20, pp. 323-330.

33. Raboy, V. (2002). Progress in breeding low phytate crops. J. Nutr., 132, pp. 503-505.

34. Raboy, V., Peterson, K., Jackson, C., Marshall, J., Hu, G., Saneoka, H. & Bregitzer, P. (2015). A substantial fraction of barley (Hordeum vulgare L.) low phytic acid mutations have little or no effect on yield across diverse production environments. Plants., 4, pp. 225-239.

35. Raboy, V., Young, K.., Dorsch, J. & Cook, A. (2001). Genetics and breeding of seed phosphorus and phytic acid. J. Plant Physiol., 158, pp. 489-497.

36. Harvey, B. & Rossnagel, B. (1984). Harrington barley. Can. J. Plant Sci., 64, pp. 193-194.

37. Bregitzer, P. & Raboy, V. (2007). Registration of four low-phytate/wild type pairs of barley germplasms. J. Plant Reg., 1, pp. 139-140.

38. Bregitzer, P., Raboy, V., Obert, D., Windes, J. & Whitmore, J. (2008). Registration of 'Clearwater' low-phytate hulless spring barley. J. Plant Reg., 2, pp. 1-4.

39. Rossnagel, B., Zatorski, T., Arganosa, G. & Beattie, A. (2008). Registration of 'CDC Lophy' barley. J. Plant Reg., 2, pp. 169-173.

40. Chen, P., Toribara, T. & Warner, H. (1956). Microdetermination of phosphorus. Anal. Chem., 28, pp. 1756-1758.

41. Raboy, V., Cichy, K., Peterson, K., Reichman, S., Sompong, U., Srinives, P. & Saneoka, H. (2014). Barley (Hordeum vulgare L.) low phytic acid 1-1: an endosperm-specific, filial determinant of seed total phosphorus. J. of Heredity.

42. Ye, H., Zhang, X., Broughton, S., Westcott, S., Wu, D., Lance, R. & Li, C. (2011). A nonsense mutation in a putative sulphate transporter gene results in low phytic acid in barley. Funct. Integr. Genomics., 11, pp. 103-110.

43. Bregitzer, Ph., Hu, G., Marshall, J. & Raboy, V. (2017). Registration of «Sawtooth» low-phytate, hulless, spring barley. J. Plant Regi, 11, pp. 81-84.

44. Li, Y., Ledoux, D., Veum, T., Raboy, V., Zyla, K. & Wikiera, A. (2001). Bioavailability of phosphorus in low phytic acid barley. J. Appl. Poultry Res., 10, pp. 86-91.

45. Cheryan, M. (1980). Phytic acid interactions in food systems. Crit. Rev. Food Sci. Nutr., 13, pp. 297-335.

46. Kornegay, E. (2001). Digestion of phosphorus and other nutrients: The role of phytases and factors influencing their activity. in Enzymes in Farm Animal Nutrition. CABI Publishing, New York: NY., pp. 237-272.

47. Linares, L., Broomhead, J., Guaiume, E., Ledoux, D., Veum, T. & Raboy, V. (2007). Effect of low phytate barley (Hordeum vulgare L.) on zinc utilization in young broiler chicks. Poult. Sci., 86, pp. 299-308.

48. Li, Y., Ledoux, D., Veum, T., Raboy, V. & Zyla, K. (2001). Low phytic acid barley improves performance, bone mineralization, and phosphorus retention in turkey poults. J. Appl. Poult. Res., 10, pp. 178-185.

49. Veum, T., Ledoux, D., Raboy, V. & Ertl, D. (2001). Low phytic acid corn mproves nutrient utilization for growing pigs. J. Anim. Sci., 79, pp. 2873-2880.

50. Sugiura, S., Raboy, V., Young, A., Dong, F. & Hardy, R. (1999). Availability of phosphorus and trace minerals in low-phytate varieties of barley and corn for ainbow trout (Oncorhynchus mykiss). Aquaculture, 170, pp. 285-296.

51. Veum, T. R., Ledoux, D., Bollinger, D., Raboy, V. & Cook, A. (2002). Low-phytic acid barley improves calcium and phosphorus utilization and growth performance in growing pigs. J. Anim. Sci., 80, pp. 2663-2670.

52. Bregitzer, P., Raboy, V. & Obert, D. (2010). Registration of LP1-2581, LP1-2163H, LP3-1159, and LP640-1304 low-phytate spring barley germplasm lines. J. Plant Reg., 4 (3), pp. 228-231.

53. Poulsen, H., Johansen, K., Hatzack, F., Boisen, S. & Rasmussen, S. (2001). Nutritional value of low-phytate barley evaluated in rats. Acta Agric. Scand., Sect. A, Anim. Sri., 51, pp. 53-58.

54. Hambidge, K., Krebs, N., Westcott, J., Sian, L., Miller, L., Peterson, K. & Raboy, V. (2005). Absorption of calcium from tortilla meals prepared from low-phytate maize. Amer. J. Clin. Nutr., 82, pp. 84-87.

55. McCance, R. & Widdowson, E. (1942). Mineral metabolism of dephytinized bread. J. Physiol., 101, pp. 304-313.

56. Reinhold, G., Nasr, K., Lahimgarzadeh, A. & Hedayati, H. (1973). Effects of purified phytate and phytate-rich bread upon metabolism of zinc, calcium, phosphorus, and nitrogen in man. Lancet., 1, pp. 283-288.

57. Knox, T., Kassarjian, Z. & Dawson-Hughes, B. (1991). Calcium absorption in elderly subjects on high - and low-fiber diets: effect of gastric acidity. Amer. J. Clin. Nutr., 53, pp. 1480-1486.

58. Heaney, R., Weaver, C. & Fitzsimmons, M. (1991). Soybean phytate content: effect on calcium absorption. Amer. J. Clin. Nutr., 53, pp. 745-747.

59. Bronner, F. (1998). Calcium absorption - a paradigm for mineral absorption. J. Nutr., 128, pp. 917-920.