Исследовали влияние донора сероводорода гидросульфида натрия (NaHS) на устойчивость этиолированных проростков пшеницы (Triticum aestivum L.) к осмотическому стрессу, вызываемому 12 %-м ПЭГ 6000. Обработка NaHS в концентрациях 0,1; 0,5; 1 мМ ослабляла угнетение роста корней и побегов под действием ПЭГ, повышала содержание воды в проростках. Наиболее заметный осмопротекторный эффект донор сероводорода оказывал при концентрации 0,5 мМ. Под его влиянием в обычных условиях и при осмотическом стрессе повышалась активность антиоксидантных ферментов каталазы и гваяколпероксидазы, в то время как активность супероксиддисмутазы существенно не изменялась. Осмотический стресс вызывал двукратное увеличение содержания пролина в побегах проростков, обработка NaHS приводила к дополнительному его повышению. Под влиянием донора сероводорода содержание антоцианов в побегах увеличивалось в обычных условиях и стабилизировалось в стрессовых. Обработка проростков NaHS ослабляла вызываемый действием ПЭГ окислительный стресс, что проявлялось в снижении содержания пероксида водорода и малонового диальдегида (МДА) в проростках. Сделан вывод, что индуцированное донором Н2S повышение устойчивости проростков пшеницы к осмотическому стрессу связано с активизацией антиоксидантной и осмопротекторной систем.
Ключевые слова: Triticum aestivum L., hydrogen sulfide, osmotic stress, antioxidant enzymes, proline, anthocyanins
Полный текст и дополнительные материалы
В свободном доступе: PDFЦитированная литература
1. Zagoskina, N.V., Olenichenko, N.A. & Nazarenko L.V. (2011). The effect of short-term action of hypothermia on the activity of antioxidant enzymes and the content of phenolic compounds in the leaves of seedlings of spring and winter wheat. Vіsnik Harkіvskogo natsіonalnogo unіversitetu. Biolohiia, 3(24), pp. 25-34 [in Russian].
2. Kolupaev, Yu.E. (2016). Antioxidants of the plant cell, their role in ROS signaling and plant resistance. Uspehi sovremennoy biologii., 136, No 2, pp. 181-198.
3. Morgun, V.V., Dubrovna, O.V. & Morgun, B.V. (2016). Modern biotechnologies for wheat-resistant plants. Fiziol. rast. genet., 48, No 3, pp. 196-214 [in Ukrainian].
4. Ostapchenko, L.I., Sinelnik, T.B. & Kompanets, I.V. (2016). Biological membranes and bases of intracellular signaling. Theoretical aspects. K.: VPTS «Kiyivskiy universitet» [in Ukrainian].
5. Shakirova, F.M. (2001). Nonspecific resistance of plants to stress factors and its regulation. Ufa: Gilem.
6. Bates, L.S., Walden, R.P. & Tear, G.D. (1973). Rapid determination of free proline for water stress studies. Plant Soil., 39, pp. 205-210 [in Russian]. https://doi.org/10.1007/BF00018060
7. Chen, J., Shang, Y.T., Wang, W.H., Chen, X.Y., He, E.M., Zheng, H.L. & Shangguan, Z. (2016). Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia oleracea seedlings. Front. Plant Sci. 7: 1173. https://doi.org/10.3389/fpls.2016.01173
8. Es-Safi, N.E., Ghidouche, S. & Ducrot, P.H. (2007). Flavonoids: hemisynthesis, reactivity, characterization and free radical scavenging activity. Molecules, 12, pp. 2228-2258. https://doi.org/10.3390/12092228
9. Fazlieva, E.R., Kiseleva, I.S. & Zhuikova, T.V. (2012). Antioxidant activity in the leaves of Melilotus albus and Trifolium medium from man-made disturbed habitats in the Middle Urals under the influence of copper. Russ. Journal of Plant Physiology, 59, pp. 333-338. https://doi.org/10.1134/S1021443712030065
10. Fu, P.N., Wang, W.J., Hou, L.X. & Liu, X. (2013). Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L. Acta Soc. Bot. Pol., 82, pp. 295-302. https://doi.org/10.5586/asbp.2013.031
11. Gadalla, M.M. & Snyder, S.H. (2010). Hydrogen sulfide as a gasotransmitter . J. Neurochem, 113, pp. 14-26. https://doi.org/10.1111/j.1471-4159.2010.06580.x
12. Hancock, J.T. & Whiteman, M. (2014). Hydrogen sulfide and cell signaling: Team player of feferee?. Plant Physiol. Biochem., 78, pp. 37-42. https://doi.org/10.1016/j.plaphy.2014.02.012
13. Islam, M.M., Hoque, M.A., Okuma, E., Banu, M.N., Shimoishi, Y., Nakamura, Y & Murata, Y. (2009). Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. Journal of Plant Physiology, 166, pp. 1587-1597. https://doi.org/10.1016/j.jplph.2009.04.002
14. Jin, Z.P., Shen, J.J., Qiao, Z.J., Yang, G., Wang, R. & Pei, Y. (2011). Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem. Biophys. Res. Commun, 414, pp. 481- 486. https://doi.org/10.1016/j.bbrc.2011.09.090
15. Karpets, Yu.V., Kolypaev, Yu.E., Lugovaya, A.A. & Oboznyi, A.I. (2014). Effect of jasmonic acid on the pro-/antioxidant system of wheat coleoptiles as related to hyperthermia tolerance. Russian Journal of Plant Physiology, 61, pp. 339-346. https://doi.org/10.1134/S102144371402006X
16. Khlestkina, E.K. (2013). The adaptive role of flavonoids: emphasis on cereals // Cereal Res. Commun, 41, pp. 185—198. doi: https://doi.org/10.1556/CRC.2013.0004. https://doi.org/10.1556/CRC.2013.0004
17. Kolupaev, Yu.E., Firsova, E.N., Yastreb, T.O. & Lugovaya, A.A. (2017). The participation of calcium ions and reactive oxygen species in the induction of antioxidant enzymes and heat resistance in plant cells by hydrogen sulfide donor. Applied Biochemistry Microboilogy, 53, pp. 573-579. https://doi.org/10.1134/S0003683817050088
18. Kolupaev, Yu.E., Karpets, Yu.V., Yastreb, T.O., Firsova, E.N. Protective effect of inhibitors of succinate dehydrogenase on wheat seedlings during osmotic stress // Ibid. — P. 353—358.
19. Lai, D.W., Mao, Y., Zhou, H., Li, F., Wu, M., Zhanq, J., He,Z., Cui, W. & Xie, Y. (2014). Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Sci., 225, pp. 117-129. https://doi.org/10.1016/j.plantsci.2014.06.006
20. Li, H., Li, M., Wei, X., Zhanq, X., Xue, R., Zhao, Y. & Zhao, H. (2017). Transcriptome analysis of drought responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves. Mol. Genet. Genomics. doi: https//doi:10.1007/s00438-017—1330—4. https://doi.org/10.1007/s00438-017-1330-4
21. Li, Q., Wang, Z., Zhao, Y., Zhanq, X., Zhanq, S., Bo, L., Wanq, Y., Dinq, Y. & An, L. (2016). Putrescine protects hulless barley from damage due to UV-B stress via H2S- and H2O2-mediated signaling pathways. Plant Cell Rep. doi: https//doi: 10.1007/s00299-016—1952—8. https://doi.org/10.1007/s00299-016-1952-8
22. Lisjak, M., Teklic, T., Wilson, I.D., Whiteman, M. & Hancock, J.T. (2013). Hydrogen sulfide: environmental factor or signalling molecule?. Plant Cell Environ, 36, pp. 1607-1616. https://doi.org/10.1111/pce.12073
23. Li, S.P., Hu, K.D., Hu, L.Y., Li, Y.H., Jianq, A.M., Xiao, F., Han, Y., Liu, Y.S. & Zhanq, H. (2014). Hydrogen sulfide alleviates postharvest senescence of broccoli by modulating antioxidant defense and senescencerelated gene expression. J. Agric. Food Chem., 62, pp. 1119-1129. https://doi.org/10.1021/jf4047122
24. Li, Z.G., Luo, L.J. & Sun, Y.F. (2015). Signal crosstalk between nitric oxide and hydrogen sulfide may be involved in hydrogen peroxide induced thermotolerance in maize seedlings. Russian Journal of. Plant Physiology, 62, pp. 507-514. https://doi.org/10.1134/S1021443715030127
25. Li, Z.G. (2015). Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings. Plant Signal. Behav. 10:9. — e1051278.
26. Li, Z.G., Yang, S.Z., Long, W.B., Yang, G.X & Shen, Z.Z. (2013). Hydrogen sulfide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant Cell Environ, 36, pp. 1564-1572. https://doi.org/10.1111/pce.12092
27. Liu, J., Zhang, H., Yin, Y. & Chen, H. (2017). Effects of exogenous hydrogen sulfide on antioxidant metabolism of rice seed germinated under drought stress. Journal of Southern Agriculture. 48, pp. 31-37.
28. Ma, D., Ding, H., Wang, C., Qin, H., Han, Q., Hou, J., Lu, H., Xie, Y & Guo, T. (2017). Alleviation of drought stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat. PLoS One.
29. Nogues, S.& Baker, N.R. (2000). Effects of drought on photosynthesis in Mediterranean plants grown under UV-B radiation. J. Exp. Bot., 51, pp. 1309-1317. https://doi.org/10.1093/jexbot/51.348.1309
30. Radyukina, N.L., Toaima, V.I.M. & Zaripova, N.R. (2012). The involvement of low-molecular antioxidants in cross-adaptation of medicine plants to successive action of UV-B radiation and salinity. Russian Journal of Plant Physiology, 59, pp. 71—78. https://doi.org/10.1134/S1021443712010165
31. Sagisaka, S. (1976). The occurrence of peroxide in a perrennial plant, Populus gelrica. Plant Physiology, 57, pp. 308-309. https://doi.org/10.1104/pp.57.2.308
32. Shan, C., Zhang, S. & Zhou, Y. (2017). Hydrogen sulfide is involved in the regulation of ascorbate-glutathione cycle by exogenous ABA in wheat seedling leaves under osmotic stress. Cereal Research. Communications, 45, pp. 411-420. doi: https//doi.org/10.1556/0806.45.2017.021. https://doi.org/10.1556/0806.45.2017.021
33. Tian, B., Qiao, Z., Zhang, L., Li, H. & Pei, Y. (2016). Hydrogen sulfide and proline cooperate to alleviate cadmium stress in foxtail millet seedlings. Plant Physiol. Biochem., 109, pp. 293-299. https://doi.org/10.1016/j.plaphy.2016.10.006
34. Yu, L., Zhang, C., Shang, H., Wang, X., Wei, M., Yang, F & Shi, Q. (2013). Exogenous hydrogen sulfide enhanced antioxidant capacity, amylase activities and salt tolerance of cucumber hypocotyls and radicles. Journal of Integrative Agriculture, 12, pp. 445-456. https://doi.org/10.1016/S2095-3119(13)60245-2
35. Zhang, H., Wang, M.J., Hu, L.Y., Wang, S.H., Hu, K.D., Bao, L. J & Luo, J.P. (2010). Hydrogen sulfide promotes wheat seed germination under osmotic stress. Russian Journal of Plant Physiology, 57, pp. 532-539. https://doi.org/10.1134/S1021443710040114