Fiziol. rast. genet. 2023, vol. 55, no. 4, 344-354, doi: https://doi.org/10.15407/frg2023.04.344

Preparation of a biosafe flavonoid-rich extract from the «hairy» roots of Artemisia tilesii Ledeb.

Bohdanovyсh T.A., Matvieieva N.A.

  • Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine 148 Akademika Zabolotnogo St., Kyiv, 03143, Ukraine

The creation of new drugs based on extracts of the «hairy» roots of rare medicinal plants used in traditional medicine can help solve three important problems of biotechnology at once: the search for natural producers of biologically active compounds, the search for new products, and the possibility of intensification of production. Therefore, the aim of this work was to obtain a complex of bioflavonoids in the form of a dry extract of the «hairy» roots of Artemisia tilesii Ledeb. followed by an assessment of its biosafety. For this, a line of «hairy» roots of Tilesius’ wormwood, which has fast growth and sensitivity to methyl jasmonate as an elicitor, that was shown earlier, was chosen. Two-stage cultivation with methyl jasmonate at a concentration of 100 mM revealed the possibility of increasing the content of flavonoids by 3.3 times (up to 27.56±2.52 mg RE/g of FW), which is important for the intensification of the process. The content of dry matter in 1 g of roots obtained after such cultivation was 0.15 g or 14.8 %. From 1 g of lyophilized roots, 270 mg of dry ethanolic extract was obtained with a flavonoid content of 95.53 mg RE/g of dry extract, i.e. 9.56 % of its dry weight. Thus, 4 g of dry extract with a total flavonoid content of 382.12 mg RE can be obtained from 100 g of «hairy» roots. The results of determining the biosafety of the flavonoid-containing composition using the in vitro culture of Lemna minor L. showed that the duckweed leaves number and mass increase was even greater than in the control samples (the number of leaves was 26 % greater and their mass increase was by 35.50 %) and in samples cultivated with flavonoid standards (fisetin, kaempferol, epicatechin, and quercetin for comparison). Such results indicate the non-toxicity and biosafety of the preparation for plants. In addition to non-toxicity, the obtained complex of compounds has been shown to have a growth-stimulating effect. Therefore, the proposed method of obtaining a flavonoid-containing complex based on the «hairy» roots of A. tilesii can be used as a basis for the development of new biosafe preparations of valuable bioactive compounds.

Keywords: Artemisia tilesii Ledeb., flavonoids, biosafety, non-toxicity

Fiziol. rast. genet.
2023, vol. 55, no. 4, 344-354

Full text and supplemented materials

Free full text: PDF  

References

1. Boudreau, A., Richard, A.J., Harvey, I. & Stephens, J.M. (2022). Artemisia scoparia and metabolic health: untapped potential of an ancient remedy for modern use. Front. Endocrinol., 12, p. 727061. https://doi.org/10.3389/fendo.2021.727061

2. Dogra, S., Singh, J., Koul, B. & Yadav, D. (2023). Artemisia vestita: a folk medicine with hidden herbal fortune. Molecules (Basel, Switzerland), 28, No. 6, p. 2788. https://doi.org/10.3390/molecules28062788

3. Ekiert, H., Klimek-Szczykutowicz, M., Rzepiela, A., Klin, P. & Szopa, A. (2022). Artemisia species with high biological values as a potential source of medicinal and cosmetic raw materials. Molecules (Basel, Switzerland), 27, No. 19, p. 6427. https://doi.org/10.3390/molecules27196427

4. Ekiert, H., Świątkowska, J., Knut, E., Klin, P., Rzepiela, A., Tomczyk, M., & Szopa, A. (2021). Artemisia dracunculus (tarragon): a review of its traditional uses, phytochemistry and pharmacology. Front. Pharmacol., 12, p. 653993. https://doi.org/10.3389/fphar.2021.653993

5. Ekiert, H., Pajor, J., Klin, P., Rzepiela, A., џlesak, H. & Szopa, A. (2020). Significance of Artemisia vulgaris L. (Common Mugwort) in the history of medicine and its possible contemporary applications substantiated by phytochemical and pharmacological studies. Molecules (Basel, Switzerland), 25, No. 19, p. 4415. https://doi.org/10.3390/molecules25194415

6. Native American Ethnobotany Database [Electronic resource]. (2022). Retrieved from http://naeb.brit.org/uses/search/?string=artemisia+tilesii

7. Alaska ethnobotany [Electronic resource]. (2023). Retrieved from https://alaskaethnobotany.community.uaf.edu/artemisia-moon-plants-for-women

8. Suh Nchang, A., Shinyuy, L.M., Noukimi, S.F., Njong, S., Bambara, S., Kalimba, E.M., Kamga, J., Ghogomu, S.M., Frederich, M., Talom, J.L.L., Souopgui, J. & Robert, A. (2023). Knowledge about asymptomatic malaria and acceptability of using Artemisia afra tea among health care workers (HCWs) in Yaoundѕ, Cameroon: a cross-sectional survey. Int. J. Env. Res. Publ. Health, 20, No. 13, p. 6309. https://doi.org/10.3390/ijerph20136309

9. Septembre-Malaterre, A., Lalarizo Rakoto, M., Marodon, C., Bedoui, Y., Nakab, J., Simon, E., Hoarau, L., Savriama, S., Strasberg, D., Guiraud, P., Selambarom, J. & Gasque, P. (2020). Artemisia annua, a traditional plant brought to light. Int. J. Mol. Sci., 21, No. 14, p. 4986. https://doi.org/10.3390/ijms21144986

10. Feng, X., Cao, S., Qiu, F. & Zhang, B. (2020). Traditional application and modern pharmacological research of Artemisia annua L. Pharmacol. & Therapeut., 216, p. 107650. https://doi.org/10.1016/j.pharmthera.2020.107650

11. Ivanov, M., Gašić, U., Stojković, D., Kostić, M., Mišić, D., & Soković, M. (2021). New evidence for Artemisia absinthium L. application in gastrointestinal ailments: ethnopharmacology, antimicrobial capacity, cytotoxicity, and phenolic profile. Evidence-based complementary and alternative medicine: eCAM, 2021, p. 9961089. https://doi.org/10.1155/2021/9961089

12. Shinyuy, L.M., Loe, G.E., Jansen, O., Mamede, L., Ledoux, A., Noukimi, S.F., Abenwie, S.N., Ghogomu, S.M., Souopgui, J., Robert, A., Demeyer, K. & Frederich, M. (2023). Secondary metabolite isolated from Artemisia afra and Artemisia annua and their anti-malarial, anti-inflammatory and immunomodulating properties-pharmacokinetics and pharmacodynamics: a review. Metabolites, 13, No. 5, p. 613. https://doi.org/10.3390/metabo13050613

13. Sohail, J., Zubair, M., Hussain, K., Faisal, M., Ismail, M., Haider, I., Mumtaz, R., Khan, A.A. & Khan, M.A. (2023). Pharmacological activities of Artemisia absinthium and control of hepatic cancer by expression regulation of TGFb1 and MYC genes. PloS one, 18, No. 4, p. e0284244. https://doi.org/10.1371/journal.pone.0284244

14. Mohamed, T.A., Abd El-Razek, M.H., Saleh, I.A., Ali, S.K., Abd El Aty, A.A., Parѕ, P.W. & Hegazy, M.F. (2023). Artemisia herba-alba sesquiterpenes: in silico inhibition in the ATP-binding pocket. RSC advances, 13, No. 28, pp. 19530-19539. https://doi.org/10.1039/D3RA02690F

15. Alamgir, A.N.M. (2018). Biotechnology, in vitro production of natural bioactive compounds, herbal preparation, and disease management (treatment and prevention). Therapeutic use of medicinal plants and their extracts. Vol. 2: Phytochemistry and Bioactive Compounds, 74, pp. 585-664. https://doi.org/10.1007/978-3-319-92387-1_7

16. Rolnik, A. & Olas, B. (2021). The plants of the Asteraceae family as agents in the protection of human health. Int. J. Mol. Sci., 22, No. 6, p. 3009. https://doi.org/10.3390/ijms22063009

17. Kshirsagar, S.G. & Rao, R.V. (2021). Antiviral and immunomodulation effects of artemisia. Medicina (Kaunas, Lithuania), 57, No. 3, p. 217. https://doi.org/10.3390/medicina57030217

18. Trendafilova, A., Moujir, L.M., Sousa, P.M.C. & Seca, A.M.L. (2020). Research advances on health effects of edible Artemisia species and some sesquiterpene lactones constituents. Foods (Basel, Switzerland), 10, No. 1, p. 65. https://doi.org/10.3390/foods10010065

19. Sharifi-Rad, J., Herrera-Bravo, J., Semwal, P., Painuli, S., Badoni, H., Ezzat, S. M., Farid, M.M., Merghany, R.M., Aborehab, N.M., Salem, M.A., Sen, S., Acharya, K., Lapava, N., Martorell, M., Tynybekov, B., Calina, D. & Cho, W.C. (2022). Artemisia spp.: an update on its chemical composition, pharmacological and toxicological profiles. Oxidative medicine and cellular longevity, 2022, p. 5628601. https://doi.org/10.1155/2022/5628601

20. Kamarya, Y., Lijie, X. & Jinyao, L. (2022). Chemical constituents and antitumor mechanisms of artemisia. Anti-cancer agents in medicinal chemistry, 22, No. 10, pp. 1838-1844. https://doi.org/10.2174/1871520621666210708125230

21. Royal Botanic Gardens, Plants of the world online [Electronic resource]. (2023). Retrieved from https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:20769-2

22. Saarela, J.M., Sokoloff, P.C., Gillespie, L.J., Bull, R.D., Bennett, B.A. & Ponomarenko, S. (2020). Vascular plants of Victoria Island (Northwest Territories and Nunavut, Canada): a specimen-based study of an Arctic flora. PhytoKeys, 141, pp. 1-330. https://doi.org/10.3897/phytokeys.141.48810

23. Sathasivam, R., Choi, M., Radhakrishnan, R., Kwon, H., Yoon, J., Yang, S.H., Kim, J.K., Chung, Y.S. & Park, S.U. (2022). Effects of various Agrobacterium rhizogenes strains on hairy root induction and analyses of primary and secondary metabolites in Ocimum basilicum. Front. Plant Sci., 13, p. 983776. https://doi.org/10.3389/fpls.2022.983776

24. Yeo, H.J., Kwon, M.J., Han, S.Y., Jeong, J.C., Kim, C.Y., Park, S.U. & Park, C.H. (2023). Effects of carbohydrates on rosmarinic acid production and in vitro antimicrobial activities in hairy root cultures of Agastache rugosa. Plants (Basel, Switzerland), 12, No. 4, p. 797. https://doi.org/10.3390/plants12040797

25. Wang, H., Wang, A., Pu, H., Yang, Y., Ling, Z., Xu, H., Xu, J., Yu, H. & Wu, X. (2023). Induction, flavonoids contents, and bioactivities analysis of hairy roots and true roots of Tetrastigma hemsleyanum diels et gilg. Molecules (Basel, Switzerland), 28, No. 6, p. 2686. https://doi.org/10.3390/molecules28062686

26. Kowalczyk, T., Merecz-Sadowska, A., Rijo, P., Isca, V.M.S., Picot, L., Wielanek, M., џliwiXski, T. & Sitarek, P. (2021). Preliminary phytochemical analysis and evaluation of the biological activity of Leonotis nepetifolia (L.) R. Br transformed roots extracts obtained through Rhizobium rhizogenes-mediated transformation. Cells, 10, No. 5, p. 1242. https://doi.org/10.3390/cells10051242

27. Wojciechowska, M., Owczarek, A., Kiss, A.K., Gr·bkowska, R., Olszewska, M.A. & Grzegorczyk-Karolak, I. (2020). Establishment of hairy root cultures of Salvia bulleyana Diels for production of polyphenolic compounds. J. Biotech., 318, pp. 10-19. https://doi.org/10.1016/j.jbiotec.2020.05.002

28. KrzemiXska, M., Owczarek, A., Gonciarz, W., Chmiela, M., Olszewska, M.A. & Grzegorczyk-Karolak, I. (2022). The antioxidant, cytotoxic and antimicrobial potential of phenolic acids-enriched extract of elicited hairy roots of Salvia bulleyana. Molecules, 27, No. 3, p. 992. https://doi.org/10.3390/molecules27030992

29. Gharari, Z., Bagheri, K., Danafar, H. & Sharafi, A. (2020). Enhanced flavonoid production in hairy root cultures of Scutellaria bornmuelleri by elicitor induced over-expression of MYB7 and FNSII2 genes. Plant Physiol. Biochem., 148, pp. 35-44. https://doi.org/10.1016/j.plaphy.2020.01.002

30. Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant., 15, No. 3, pp. 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

31. Pękal A., Pyrzynska K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7, pp. 1776-1782. https://doi.org/10.1007/s12161-014-9814-x

32. Bogdanovych, T.A. & Matveeva, N.A. (2023, March). The use of methyl jasmonate as an elicitor to increase the synthesis of secondary metabolites in «bearded» roots of wormwood.    Materials of the 3rd International scientific-pract. internet conference «Problems and achievements of modern biotechnology» (pp. 113-114). Kharkiv: NFaU [in Ukrainian].

33. Hassini, I., Rios, J.J., Garcia-IbaФez, P., Baenas, N., Carvajal, M. & Moreno, D.A. (2019). Comparative effect of elicitors on the physiology and secondary metabolites in broccoli plants. J. Plant Physiol., 239, pp. 1-9. https://doi.org/10.1016/j.jplph.2019.05.008

34. Horbowicz, M., Wiczkowski, W., GЩraj-Koniarska, J., Miyamoto, K., Ueda, J. & Saniewski, M. (2021). Effect of methyl jasmonate on the terpene trilactones, flavonoids, and phenolic acids in Ginkgo biloba L. leaves: relevance to leaf senescence. Molecules (Basel, Switzerland), 26, No. 15, p. 4682. https://doi.org/10.3390/molecules26154682

35. Wang, C., Zhang, J., Lv, J., Li, J., Gao, Y., Patience, B.E., Niu, T., Yu, J. & Xie, J. (2022). Effect of methyl jasmonate treatment on primary and secondary metabolites and antioxidant capacity of the substrate and hydroponically grown chinese chives. Front. Nut., 9, p. 859035. https://doi.org/10.3389/fnut.2022.859035

36. Sohn, S.I., Pandian, S., Rakkammal, K., Largia, M.J.V., Thamilarasan, S.K., Balaji, S., Zoclanclounon, Y.A.B., Shilpha, J. & Ramesh, M. (2022). Jasmonates in plant growth and development and elicitation of secondary metabolites: an updated overview. Front. Plant Sci., 13, p. 942789. https://doi.org/10.3389/fpls.2022.942789

37. Vergara-MartHnez, V.M., Estrada-Soto, S.E., Valencia-DHaz, S., Garcia-Sosa, K., PeФa-RodrHguez, L.M., Arellano-GarcHa, J.J. & Perea-Arango, I. (2021). Methyl jasmonate enhances ursolic, oleanolic and rosmarinic acid production and sucrose induced biomass accumulation, in hairy roots of Lepechinia caulescens. PeerJ, 9, p. e11279. https://doi.org/10.7717/peerj.11279

38. Park, J., Yoo, E.J., Shin, K., Depuydt, S., Li, W., Appenroth, K.J., Lillicrap, A.D., Xie, L., Lee, H., Kim, G., Saeger, J., Choi, S., Kim, G., Brown, M.T. & Han, T. (2021). Interlaboratory validation of toxicity testing using the duckweed lemna minor root-regrowth test. Biology, 11, No. 1, p. 37. https://doi.org/10.3390/biology11010037

39. Rozman, U. & Kalčíková, G. (2022). The response of duckweed Lemna minor to microplastics and its potential use as a bioindicator of microplastic pollution. Plants (Basel, Switzerland), 11, No. 21, p. 2953. https://doi.org/10.3390/plants11212953

40. Huang, W., Kong, R., Chen, L. & An, Y. (2022). Physiological responses and antibiotic-degradation capacity of duckweed (Lemna aequinoctialis) exposed to streptomycin. Front. Plant Sci., 13, p. 1065199. https://doi.org/10.3389/fpls.2022.1065199

41. Ziegler, P., Appenroth, K.J. & Sree, K.S. (2023). Survival strategies of duckweeds, the world's smallest angiosperms. Plants (Basel, Switzerland), 12, No. 11, p. 2215. https://doi.org/10.3390/plants12112215

42. Sikorski, Ł., Bęś, A., & Warmiński, K. (2023). The effect of quinolones on common duckweed Lemna minor L., a hydrophyte bioindicator of environmental pollution. Int. J. Environ. Res. Public Health, 20, No. 6, p. 5089. https://doi.org/10.3390/ijerph20065089

43. Zhou, Y., Stepanenko, A., Kishchenko, O., Xu, J. & Borisjuk, N. (2023). Duckweeds for phytoremediation of polluted water. Plants (Basel, Switzerland), 12, No. 3, p. 589. https://doi.org/10.3390/plants12030589

44. Acosta, K., Appenroth, K.J., Borisjuk, L., Edelman, M., Heinig, U., Jansen, M.A.K., Oyama, T., Pasaribu, B., Schubert, I., Sorrels, S., Sree, K.S., Xu, S., Michael, T.P. & Lam, E. (2021). Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era. Plant Cell, 33, No. 10, pp. 3207-3234. https://doi.org/10.1093/plcell/koab189

45. Penna-Coutinho, J., Aguiar, A.C. & Krettli, A.U. (2018). Commercial drugs containing flavonoids are active in mice with malaria and in vitro against chloroquine-resistant Plasmodium falciparum. Memorias do Instituto Oswaldo Cruz, 113, No. 12, p. e180279. https://doi.org/10.1590/0074-02760180279