Fiziol. rast. genet. 2023, vol. 55, no. 4, 314-325, doi: https://doi.org/10.15407/frg2023.04.314

Phytosynthesis of silver nanoparticles with bactericidal activity against the phytopathogenic strain of Xanthomonas campestris using Capsicum annuum pericarps aqueous extract

Smirnov O.E.1,2, Zelena P.P.1, Yumyna Yu.M.1, Kovalenko M.S.1, Konotop Ye.O.1, Taran N.Yu.1, Schwartau V.V.2

  1. Educational and Scientific Centre «Institute of Biology and Medicine» of Taras Shevchenko Kyiv National University, 64/13 Volodymyrska St., Kyiv, 01601, Ukraine
  2. nstitute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The paper proposes an effective method of phytosynthesis of silver nanoparticles using an aqueous extract of the pericarps of the hot chili pepper (Capsicum annum L.) cv. Teja with bactericidal activity against phytopathogenic agent Xanthomonas campestris pv. campestris. The extract of pericarps was investigated for the presence of secondary metabolites that can act as reducing agents (bioreducers) and stabilizing compounds. Saponins, flavonoids, phenols and alkaloids were found in the extract. Research of phytosynthesized silver nanoparticles was carried out using spectroscopy in the UV and visible part of the spectrum; the size and morphology of silver nanoparticles were recorded by scanning electron microscopy. The effectiveness of phytosynthesized nanoparticles against the growth and development of the bacterial culture X. campestris pv. campestris was established in all studied concentrations (80, 40, 20 mg/L).

Keywords: Capsicum annum L., Xanthomonas campestris, phytosynthesis, silver nanoparticles, bactericidal activity

Fiziol. rast. genet.
2023, vol. 55, no. 4, 314-325

Full text and supplemented materials

Free full text: PDF  

References

1. Dikshit, P.K., Kumar, J., Das, A.K., Sadhu, S., Sharma, S., Singh, S., Gupta, P.K. & Kim, B.S. (2021). Green Synthesis of Metallic Nanoparticles: Applications and Limitations. Catalysts, 11, No. 902. https://doi.org/10.3390/catal11080902

2. Aboyewa, J.A., Sibuyi, N.R.S., Meyer, M. & Oguntibeju, O.O. (2021). Green Synthesis of Metallic Nanoparticles Using Some Selected Medicinal Plants from Southern Africa and Their Biological Applications. Plants, 10, Iss. 9, 1929. https://doi.org/10.3390/plants10091929

3. Pandit, C., Roy, A., Ghotekar, S., Khusro, A., Islam, M.N., Emran, T.B., Lam, S.E., Khandaker, M.U. & Bradley, D.A. (2022). Biological agents for synthesis of nanoparticles and their applications. J. King Saud University-Science, 34, Iss. 3, 101869. https://doi.org/10.1016/j.jksus.2022.101869

4. Elsakhawy, T., Omara, A.E.-D., Abowaly, M., El-Ramady, H., Badgar, K., Llanaj, X., Toros, G., Hajdu, P. & Prokisch, J. (2022). Green Synthesis of Nanoparticles by Mushrooms: A Crucial Dimension for Sustainable Soil Management. Sustainability, 14, 4328. https://doi.org/10.3390/su14074328

5. Poudel, D.K., Niraula, P., Aryal, H., Budhathoki, B., Phuyal, S., Marahatha, R., Subedi, K. (2022). Plant-Mediated Green Synthesis of Ag NPs and Their Possible Applications: A Critical Review. J. Nanotechnology, 16, 2779237. https://doi.org/10.1155/2022/2779237

6. Begum, S.J.P., Pratibha, S., Rawat, J.M., Venugopal, D., Sahu, P., Gowda, A., Qureshi, K.A. & Jaremko, M. (2022). Recent Advances in Green Synthesis, Characterization, and Applications of Bioactive Metallic Nanoparticles. Pharmaceuticals, 15, Iss. 4, 455. https://doi.org/10.3390/ph15040455

7. Smirnov, O.E., Kalynovskyi, V.Y., Yumyna, Y.M., Zelena, P.P., Skoryk, M.A., Dzhagan, V.M. & Taran, N.Y. (2021). Green synthesis of silver nanoparticles using aqueous extract of hot chili pepper fruits and its antimicrobial activity against Pseudomonas aeruginosa. Ukr. Biochem. J., 93, Iss. 5, pp. 102-110. https://doi.org/10.15407/ubj93.05.102

8. Dzhagan, V., Smirnov, O., Kovalenko, M., Mazur, N., Hreshchuk, O., Taran, N. & Zahn, D.R. (2022). Spectroscopic Study of Phytosynthesized Ag Nanoparticles and Their Activity as SERS Substrate. Chemosensors, 10, Iss. 4, 129. https://doi.org/10.3390/chemosensors10040129

9. Lomeli-Rosales, D.A., Zamudio-Ojeda, A., Reyes-Maldonado, O.K., Lopez-Reyes, M.E., Basulto-Padilla, G.C., Lopez-Naranjo, E.J. & Velazquez-Juarez, G. (2022). Green Synthesis of Gold and Silver Nanoparticles Using Leaf Extract of Capsicum chinense Plant. Molecules, 27, Iss. 5, 1692. https://doi.org/10.3390/molecules27051692

10. Samrot, A.V., Shobana, N. & Jenna, R. (2018). Antibacterial and antioxidant activity of different staged ripened fruit of Capsicum annuum and its green synthesized silver nanoparticles. BioNanoScience, 8, Iss. 2, pp. 632-646. https://doi.org/10.1007/s12668-018-0521-8

11. Rajam, M.V., Nandy, S. & Pandey, R. (2021). Biotechnology of Red Pepper. In Genetically Modified Crops (pp. 53-83). Singapore: Springer. https://doi.org/10.1007/978-981-15-5932-7_3

12. Caicedo-Lopez, L.H., Guevara-Gonzalez, R.G., Ramirez-Jimenez, A.K., Feregrino-Perez, A.A. & Contreras-Medina, L.M. (2022). Eustress application trough-controlled elicitation strategies as an effective agrobiotechnology tool for capsaicinoids increase: a review. Phytochemistry Reviews, 21, pp. 1941-1968. https://doi.org/10.1007/s11101-022-09818-z

13. Batiha, G.E.S., Alqahtani, A., Ojo, O.A., Shaheen, H.M., Wasef, L., Elzeiny, M. & Hetta, H.F. (2020). Biological properties, bioactive constituents, and pharmacokinetics of some Capsicum spp. and capsaicinoids. Int. J. Mol. Sci., 21, Iss. 15, 5179. https://doi.org/10.3390/ijms21155179

14. Cruz, J.G., Silveira, T., Richter, V., Wagner, J.G., Neitzke, R.S., Barbieri, R.L. & Vizzotto, M. (2022). Genetic variability of bioactive compounds in Capsicum chinense. Food Science and Technology, 42, e123721. https://doi.org/10.1590/fst.123721

15. Ogunyemi, S.O., Zhang, M., Abdallah, Y., Ahmed, T., Qiu, W., Ali, M.A., Yan, C., Yang, Y., Chen, J. & Li, B. (2020). The Bio-Synthesis of Three Metal Oxide Nanoparticles (ZnO, MnO2, and MgO) and Their Antibacterial Activity Against the Bacterial Leaf Blight Pathogen. Front. Microbiol., 11, 588326. https://doi.org/10.3389/fmicb.2020.588326

16. Ahmed, T., Noman, M., Jiang, H., Shahid, M., Ma, C., Wu, Z., Nazir, M.M., Ali, M.A., White, J.C. & Chen, J. (2022). Bioengineered chitosan-iron nanocomposite controls bacterial leaf blight disease by modulating plant defense response and nutritional status of rice (Oryza sativa L.). NanoToday, 45, 101547. https://doi.org/10.1016/j.nantod.2022.101547

17. McEwen, S.A., Collignon, P.J., Aarestrup, F.M., Schwarz, S., Shen, J. & Cavaco, L. (2018). Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectrum, 6, No. 117. https://doi.org/10.1128/9781555819804.ch25

18. Salmanov, A.G., Ushkalov, V.O., Shunko, Y.Y., Piven, N., Vygovska, L.M., Verner, O.M. & Kushnirenko, S. (2021). One health: Antibiotic-resistant bacteria contamination in fresh vegetables sola at aretail markets in Kyiv, Ukraine. Wiad. Lek., 73, pp. 83-89. https://doi.org/10.36740/WLek202101116

19. Gangireddygari, V.S.R., Kalva, P.K., Ntushelo, K., Bangeppagari, M., Djami Tchatchou, A. & Bontha, R.R. (2017). Influence of environmental factors on biodegradation of quinalphos by Bacillus thuringiensis. Environ. Sci. Eur., 29, No. 11. https://doi.org/10.1186/s12302-017-0109-x

20. Zeng, Y., Liu, H., Zhu, T., Han, S. & Li, S. (2021). Preparation of Nanomaterial Wettable Powder Formulations of Antagonistic Bacteria from Phellodendron chinense and the Biological Control of Brown Leaf Spot Disease. Plant Pathol. J., 37, pp. 215-231. https://doi.org/10.5423/PPJ.OA.02.2021.0020

21. Tian, Y., Luo, J., Wang, H., Zaki, H.E.M., Yu, S., Wang, X., Ahmed, T., Shahid, M.S., Yan, C. & Chen, J. (2022). Bioinspired Green Synthesis of Silver Nanoparticles Using Three Plant Extracts and Their Antibacterial Activity against Rice Bacterial Leaf Blight Pathogen Xanthomonas oryzae pv. oryzae. Plants, 11, Iss. 21, 2892. https://doi.org/10.3390/plants11212892

22. Vanti, G.L., Kurjogi, M., Basavesha, K.N., Teradal, N.L., Masaphy, S. & Nargund, V.B. (2020). Synthesis and antibacterial activity of Solanum torvum mediated silver nanoparticle against Xanthomonas axonopodis pv. punicae and Ralstonia solanacearum. J. Biotechnol., 309, pp. 20-28. https://doi.org/10.1016/j.jbiotec.2019.12.009

23. Mishra, S., Yang, X., Ray, S., Fraceto, L.F. & Singh, H.B. (2020). Antibacterial and biofilm inhibition activity of biofabricated silver nanoparticles against Xanthomonas oryzae pv. oryzae causing blight disease of rice instigates disease suppression. World J. Microbiol. Biotechnol., 36, No. 55. https://doi.org/10.1007/s11274-020-02826-1

24. Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S.V., Machado, M.A., Toth, I., Salmond, G. & Foster, G.D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol., 13, Iss. 6, pp. 614-629. https://doi.org/10.1111/j.1364-3703.2012.00804.x

25. Pecenka, J., Bytesnikova, Z., Kiss, T., Penazova, E., Baranek, M., Eichmeier, A. & Adam, V. (2021). Silver nanoparticles eliminate Xanthomonas campestris pv. campestris in cabbage seeds more efficiently than hot water treatment. Materials Today Communications, 27, 102284. https://doi.org/10.1016/j.mtcomm.2021.102284

26. Vicente, J.G., Conway, J., Roberts, S.J. & Taylor, J.D. (2001). Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology, 91, Iss. 5, pp. 492-499. https://doi.org/10.1094/PHYTO.2001.91.5.492

27. Roberts, S.J., Brough, J. & Hunter, P.J. (2007). Modelling the spread of Xanthomonas campestris pv. campestris in module-raised brassica transplants. Plant Pathol., 56, Iss. 3, pp. 391-401. https://doi.org/10.1111/j.1365-3059.2006.01555.x

28. Iglesias-Bernabe, L., Madloo, P., Rodriguez, V.M., Francisco, M. & Soengas, P. (2019). Dissecting quantitative resistance to Xanthomonas campestris pv. campestris in leaves of Brassica oleracea by QTL analysis. Scientific Reports, 9, Iss. 1, 2015. https://doi.org/10.1038/s41598-019-38527-5

29. Park, Y.J., Lee, B.M, Ho-Hahn, J., Lee, G.B. & Park, D.S. (2004). Sensitive and specific detection of Xanthomonas campestris pv. campestris by PCR using species-specific primers based on hrpF gene sequences. Microbiol. Res., 159, Iss. 4, pp. 419-423. https://doi.org/10.1016/j.micres.2004.09.002

30. Kumaresan, M., Kannan, M., Chandrasekhar, C. & Vasanthi, D. (2019). Phytochemical screening and antioxidant activity of Jasminum multiflorum (pink Kakada) leaves and flowers. J. Pharmacognosy and Phytochemistry, 8, Iss. 3. pp. 1168-1173.

31. Auwal, M.S., Saka, S., Mairiga, I.A., Sanda, K.A., Shuaibu, A. & Ibrahim, A. (2014). Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa). Veterinary Research Forum: An International Quarterly Journal, 5, Iss. 2, pp. 95-100. http://www.ncbi.nlm.nih.gov/ pubmed/25568701

32. Shah, R.K. & Yadav, R.N.S. (2015). Qualitative phytochemical analysis and estimation of total phenols and flavonoids in leaf extract of Sarcochlamys pulcherrima. Global J. Bio-Sci. Biotechnol., 4, Iss. 1, pp. 81-84.

33. Joshi, A., Bhobe, M. & Sattarkar, A. (2013). Phytochemical investigation of the roots of Grewia microcos Linn. J. Chem. Pharmac. Res., 5, Iss. 7, pp. 80-87.

34. Mustapha, T., Ithnin, N.R., Othman, H., Abu Hasan, Z.-'Iffah & Misni, N. (2023). Bio-Fabrication of Silver Nanoparticles Using Citrus aurantifolia Fruit Peel Extract (CAFPE) and the Role of Plant Extract in the Synthesis. Plants, 12, Iss. 8, 1648. https://doi.org/10.3390/plants12081648

35. Smirnov, O., Kalynovskyi, V., Yumyna, Y., Zelena, P., Levenets, T., Kovalenko, M. & Skoryk, M. (2022). Potency of phytosynthesized silver nanoparticles from Lathraea squamaria as anticandidal agent and wheat seeds germination enhancer. Biologia, 77, Iss. 9, pp. 2715-2724. https://doi.org/10.1007/s11756-022-01117-4

36. Smirnov, O., Kalynovskyi, V., Zelena, P., Yumyna, Y., Dzhagan, V., Kovalenko, M. & Taran, N. (2023). Bactericidal activity of Ag nanoparticles biosynthesized from Capsicum annuum pericarps against phytopathogenic Clavibacter michiganensis. The Science of Nature, 110, Iss. 3, p. 15. https://doi.org/10.1007/s00114-023-01844-x

37. Gayathri, N., Gopalakrishnan, M. & Sekar, T. (2016). Phytochemical screening and antimicrobial activity of Capsicum chinense Jacq. Int. J. Adv. in Pharm., 5, Iss. 1, pp. 12-20. https://doi.org/10.7439/ijap.v5i1.3025

38. Mehata, M.S. (2021). Green route synthesis of silver nanoparticles using plants/ginger extracts with enhanced surface plasmon resonance and degradation of textile dye. Materials Science and Engineering: B, 273, p. 115418. https://doi.org/10.1016/j.mseb.2021.115418

39. Kiba, T., Masui, K., Inomata, Y., Furumoto, A., Kawamura, M., Abe, Y. & Kim, K.H. (2021). Control of localized surface plasmon resonance of Ag nanoparticles by changing its size and morphology. Vacuum, 192, p. 110432. https://doi.org/10.1016/j.vacuum.2021.110432

40. Salayova, A., Bedlovicova, Z., Daneu, N., Balaz, M., Lukacova Bujnakova, Z., Balazova, L. & Tkacikova, L. (2021). Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials, 11, Iss. 4, p. 1005. https://doi.org/10.3390/nano11041005

41. Malik, M., Iqbal, M.A., Malik, M., Raza, M.A., Shahid, W., Choi, J.R. & Pham, P.V. (2022). Biosynthesis and Characterizations of Silver Nanoparticles from Annona squamosa Leaf and Fruit Extracts for Size-Dependent Biomedical Applications. Nanomaterials, 12, Iss. 4, p. 616. https://doi.org/10.3390/nano12040616

42. Vanti, G.L., Nargund, V.B., Vanarchi, R., Kurjogi, M., Mulla, S.I. & Patil, R.R. (2019). Synthesis of Gossypium hirsutum-derived silver nanoparticles and their antibacterial efficacy against plant pathogens. Appl. Organometall. Chem., 33, Iss. 1, e4630. https://doi.org/10.1002/aoc.4630

43. Attallah, N.G., Elekhnawy, E., Negm, W.A., Hussein, I.A., Mokhtar, F.A. & Al-Fakhrany, O.M. (2022). In vivo and in vitro antimicrobial activity of biogenic silver nanoparticles against Staphylococcus aureus clinical isolates. Pharmaceuticals, 15, Iss. 2, 194. https://doi.org/10.3390/ph15020194