Fiziol. rast. genet. 2023, vol. 55, no. 3, 187-208, doi: https://doi.org/10.15407/frg2023.03.187

Participation of plastid terminal oxidase in the regulation of plant photosynthesis processes

Bondarenko O.Yu., Shevchenko V.V.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine  31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The proline dehydrogenase (ProDH) gene associated with proline catabolism is of practical importance for genetic engineering, as partial inhibition of its expression can lead to an increase in the content of free proline and, as a result, the level of plant tolerance to abiotic stresses, in particular drought. The aim of our work was to carry out Agrobacterium-mediated transformation of morphogenic calli of new winter bread wheat promising genotypes and obtain genetically modified plants with partial suppression of the proline dehydrogenase gene. The relatively greater efficiency of using the AGL0 strain for obtaining transgenic plants of various genotypes of winter wheat with partial suppression of the proline dehydrogenase gene in culture in vitro was shown. The frequency of the Arabidopsis ProDH target gene sequences insertion when using the LBA4404 strain in the studied genotypes was 0.7—1.7 %, and when using the AGL0 strain — 1.0—2.0 %. The transgenic status of the obtained regenerants was confirmed by PCR analysis. Reverse transcriptase PCR (RT-PCR) using total RNA confirmed the expression of the introduced Arabidopsis proline dehydrogenase gene at the transcription level in transgenic wheat plants obtained by Agrobacterium-mediated transformation. It was established that plants with reduced activity of proline dehydrogenase are characterized by a significantly higher content of free L-proline compared to the non-transgenic control.

Keywords: Triticum aestivum L., Agrobacterium-mediated transformation, callus cultures, proline dehydrogenase gene

Fiziol. rast. genet.
2023, vol. 55, no. 3, 187-208

Full text and supplemented materials

Free full text: PDF  

References

1. Bukhov, N.G. & Carpentier, N.G. (2004). Alternative photosystem I-driven electron transport routes: mechanisms and functions. Photosynthesis Research, No. 82, pp. 17-33. https://doi.org/10.1023/B:PRES.0000040442.59311.72

2. Wetzel, C.M., Jiang, C.-Z., Meehan, L.J., Voytas, D.F. & Rodermel, S.R. (1994). Nuclear-organelle interactions: the immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis. Plant J., No. 6, pp. 161-175. https://doi.org/10.1046/j.1365-313X.1994.6020161.x

3. Carol, P., Stevenson, D., Bisanz, C., Breitenbach, J., Sandmann, G., Mache, R., Coupland, G. & Kuntz, M. (1999). Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell, No. 11 (1), pp. 57-68. https://doi.org/10.1105/tpc.11.1.57

4. Lennon, A.M., Prommeenate, P. & Nixon, P.J. (2003). Location, expression and orientation of the putative chlororespiratory enzymes, Ndh and IMMUTANS, in higher-plant plastids. Planta, No. 218, pp. 254-260. https://doi.org/10.1007/s00425-003-1111-7

5. Quiles, M.J. (2006). Stimulation of chlororespiration by heat and high light intensity in oat plants. Plant Cell Environ., No. 29, pp. 1463-1470. https://doi.org/10.1111/j.1365-3040.2006.01510.x

6. Stepien, P. & Johnson, G.N. (2009). Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: Role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol., No. 149, pp. 1154-1165. https://doi.org/10.1104/pp.108.132407

7. Stepien, P. & Johnson, G.N. (2018). Plastid terminal oxidase requires translocation to the grana stacks to act as a sink for electron transport. Proc. Natl. Acad. Sci. U.S.A., No. 115, pp. 9634-9639. https://doi.org/10.1073/pnas.1719070115

8. Ivanov, A.G., Rosso, D., Savitch, L.V., Stachula, P., Rosembert, M., Oquist, G., Hurry, V. & Huner N.P.A. (2012). Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold acclimated Arabidopsis thaliana. Photosynthesis Research, No. 113, pp. 191-206. https://doi.org/10.1007/s11120-012-9769-y

9. Laureau, C., De Paepe, R., Latouche G., Moreno-Chacon, M., Finazzi, G., Kuntz, M., Cornic, G. & Streb, P. (2013). Plastid terminal oxidase (PTOX) has the potential to act as a safety valve for excess excitation energy in the alpine plant species Ranunculus glacialis L. Plant, Cell and Environ., No. 36, pp. 1296-1310. https://doi.org/10.1111/pce.12059

10. Trouillard, M., Shahbazi, M., Moyet, L., Rappaport, F., Joliot, P., Kuntz, M. & Finazzi, G. (2012). Kinetic properties and physiological role of the plastoquinone terminal oxidase (PTOX) in a vascular plant. Biochim. Biophys. Acta, No. 1817, pp. 2140-2148. https://doi.org/10.1016/j.bbabio.2012.08.006

11. Nawrocki, W.J., Tourasse, N.J., Taly, A., Rappaport, F. & Wollman, F.-A. (2015). The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology. Annu. Rev. Plant Biol., No. 66, pp. 49-74. https://doi.org/10.1146/annurev-arplant-043014-114744

12. Yu, Q., Feilke, K., Krieger-Liszkay, A. & Beyer, P. (2014). Functional and molecular characterization of plastid terminal oxidase from rice (Oryza sativa). Biochim. Biophys. Acta, No. 1837, pp. 1284-1292. https://doi.org/10.1016/j.bbabio.2014.04.007

13. Feilke, K., Streb, P., Cornic, G., Perreau, F., Kruk, J. & Krieger-Liszkay, A. (2016). Effect of Chlamydomonas plastid terminal oxidase 1 expressed in tobacco on photosynthetic electron transfer. Plant J., No. 85, pp. 219-228. https://doi.org/10.1111/tpj.13101

14. Krieger-Liszkay, A. & Feilke, K. (2016). The dual role of the plastid terminal oxidase PTOX: between a protective and a pro-oxidant function. Front. Plant Sci., No. 6, p. 1147. https://doi.org/10.3389/fpls.2015.01147

15. Bolte, S., Marcon, E., Jaunario, M., Moyet L., Paternostre, M., Kuntz, M. & Krieger-Liszkay, A. (2020). Dynamics of the localization of the plastid terminal oxidase inside the chloroplast. J. Exp. Botany, No. 9, pp. 2661-2669. https://doi.org/10.1093/jxb/

16. Kochubey, S.M., Bondarenko, O.Yu. & Shevchenko, V.V. (2014). Structural organization and functional features of the light phase of photosynthesis. Photosynthesis. Vol. 1. Kyiv: Logos [in Russian].

17. Pribil, M., Labs, M. & Leister, D. (2014). Structure and dynamics of thylakoids in land plants. J. Exp. Botany, No. 8, pp. 1955-1972. https://doi.org/10.1093/jxb/eru090

18. Kirchhoff, H. (2019). Chloroplast ultrastructure in plants. New Phytologist., pp. 565-574. https://doi.org/10.1111/nph.15730

19. Shevchenko, V.V., Bondarenko, O.Yu. & Kornyeyev, D.Yu. (2022). Short-term heating causes thylakoid restructuring in pea chloroplasts and modifies spectral properties of pigment-proteins. Plant physiology and genetics., No. 2, pp. 134-147. https://doi.org/10.15407/frg2022.02.134

20. Kirchhoff, H., Hall, C., Wood, M., Herbstova, M., Tsabari, O., Nevo, R., Charuvi, D., Shimoni & Reich, Z. (2011). Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl. Acad. Sci. USA, No. 108 (50), pp. 20248-20253. https://doi.org/10.1073/pnas.1104141109

21. Ruban, A. (2016). Nonphotochemical Chlorophyll Fluorescence Quenching: Mechanism and Effectiveness in Protecting Plants from Photodamage. Plant Physiol., No. 4, pp. 1903-1916. https://doi.org/10.1104/pp.15.01935

22. Jotham, A.R., Frost, E., Vidi, P.-A., Kessler, F. & Staehelin, L.A. (2006). Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell, No. 7, pp. 1693-703. https://doi.org/10.1105/tpc.105.039859

23. Shiba, T., Kido, Y., Sakamoto, K., Inaoka, D., Tsuge, C., Tatsumi, R., Takahashi, G., Balogun, E.O., Nara, T., Aoki, T., Honma, T., Inoue, M., Matsuoka, S., Saimoto, H., Moore, A.L., Harada, S. & Kita, K. (2013). Structure of the trypanosome cyanidein­sensitive alternative oxidase. Proc. Natl. Acad. Sci. USA, No. 110, pp. 4580-4585. https://doi.org/10.1073/pnas.1218386110

24. Gemmecker, S., Schaub, P., Koschmieder, J., Brausemann, A., Drepper, F., Rodriguez-Franco, M., Ghisla, S., Wairsceid. B., Einsle, O. & Beyer, P. (2015). Phytoene Desaturase from Oryza sativa: Oligomeric Assembly, Membrane Association and Preliminary 3d-Analysis. PLoS One, No. 10, e0131717. https://doi.org/10.1371/journal.pone.0131717

25. Wu, D., Wright, D.A., Wetzel, C., Voytas, D.F. & Rodermel, S. (1999). The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell, No. 11 (1), pp. 43-55. https://doi.org/10.1105/tpc.11.1.43

26. Allison, E., McDonald, A., Ivanov, G., Bode, R., Maxwell, D.P., Rodermel, S.R. & Huner, N.P.A. (2011). Flexibility in photosynthetic electron transport: The physiological role of plastoquinol terminal oxidase (PTOX). Biochim. Biophys. Acta, No. 1807, pp. 954-967 https://doi.org/10.1016/j.bbabio.2010.10.024

27. Berthold, D.A., Andersson, M.E. & Nordlund, P. (2000). New insight into the structure and function of the alternative oxidase. Biochim. Biophys. Acta, No. 1460, pp. 241-254. https://doi.org/10.1016/S0005-2728(00)00149-3

28. Andersson, M.E. & Nordlund, P. (1999). A revised model of the active site of alternative oxidase, FEBS Lett., No. 449, pp. 17-22. https://doi.org/10.1016/S0014-5793(99)00376-2

29. Berthold, D.A., Voevodskaya, N., Stenmark, P., Graslund, A. & Nordlund, P. (2002). EPR studies of the mitochondrial alternative oxidase. Evidence for a diiron carboxylate center. J. Biol. Chem., No. 277, pp. 43608-43614. https://doi.org/10.1074/jbc.M206724200

30. Moore, A.L., Carre, J.E., Affourtit, C., Albury, M.S., Crichton, P.G., Kita, K. & Heathcote, P. (2008). Compelling EPR evidence that the alternative oxidase is a diiron carboxylate protein. Biochim. Biophys. Acta, No. 1777, pp. 327-330. https://doi.org/10.1016/j.bbabio.2008.01.004

31. Fu, A., Park, S. & Rodermel S. (2005). Sequences required for the activity of PTOX (IMMUTANS), a plastid terminal oxidase: in vitro and in planta mutagenesis of iron-binding sites and a conserved sequence that corresponds to Exon 8. J. Biol. Chem., No. 280, pp. 42489-42496. https://doi.org/10.1074/jbc.M508940200

32. Cournac, L., Josse, E.-M., Joet, T., Rumeau, D., Redding, K., Kuntz, M. & Peltier, G. (2000). Flexibility in photosynthetic electron transport: a newly identified chloroplast oxidase involved in chlororespiration. Phil. Trans. R. Soc. Lond. B., No. 355, pp. 1447-1454. https://doi.org/10.1098/rstb.2000.0705

33. Josse, E.-M., Alcaraz, J.-P., Laboure, A.-M. & Kuntz, M. (2003). In vitro characterization of a plastid terminal oxidase (PTOX). Eur. J. Biochem., No. 270, pp. 3787-3794. https://doi.org/10.1046/j.1432-1033.2003.03766.x

34. Fu, A., Aluru, M. & Rodermel, S.R. (2009). Conserved active site sequences in Arabidopsis plastid terminal oxidase (PTOX): in vitro and in planta mutagenesis studies, J. Biol. Chem., No. 284, pp. 22625-22632. https://doi.org/10.1074/jbc.M109.017905

35. Heber, U. & Walker, D. (1992). Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiol., No. 100, pp. 1621-1626. https://doi.org/10.1104/pp.100.4.1621

36. Ravenel, J., Peltier, G. & Havaux, M. (1994). The cyclic electron pathways around photosystem I in Chlamydomonas reinhardtii as determined in vivo by photoacoustic measurements of energy storage. Planta, No. 193, pp. 251-259. https://doi.org/10.1007/BF00192538

37. Bennoun, P. (1982). Evidence for a respiratory chain in the chloroplast. Proceedings of the National Academy of Sciences of the United States of America, 79, pp. 4352-4356. https://doi.org/10.1073/pnas.79.14.4352

38. Peltier, G., Ravenel, J. & Vermeglio, A. (1987). Inhibition of a respiratory activity by short saturating flashes in Chlamydomonas: Evidence for a chlororespiration. Biochim. Bioph. Acta (BBA) - Bioenergetics, No. 893, pp. 83-90. https://doi.org/10.1016/0005-2728(87)90151-4

39. Burrows, P.A., Sazanov, L.A., Svab, Z., Maliga, P. & Nixon, P.J. (1998). Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J., No. 17, pp. 868-876. https://doi.org/10.1093/emboj/17.4.868

40. Shikanai, T., Endo, T., Hashimoto, T., Yamada, Y., Asada, K. & Yokota, A. (1998). Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc. Natl. Acad. Sci., No. 95, pp. 9705-9709. https://doi.org/10.1073/pnas.95.16.9705

41. Kofer, W., Koop, H.-U., Wanner, G. & Steinmuller, K. (1998). Mutagenesis of the genes encoding subunits A, C, H, I, J and K of the plastid NAD(P)H-plastoquinone oxidoreductase in tobacco by polyethylene glycol-mediated plastome transformation. Mol. Gen. Genet., No. 258, pp. 166-173. https://doi.org/10.1007/s004380050719

42. Cournac, L., Redding, K., Ravenel, J., Rumeau, D., Josse, E.-M., Kuntz, M. and Peltier, G. (2000). Electron flow between photosystem II and oxygen in chloroplasts of photosystem I deficient algae is mediated by a quinol oxidase involved in chlororespiration. J. Biol. Chem., No. 275, pp. 17256-17262. https://doi.org/10.1074/jbc.M908732199

43. Powles, S.B. (1984). Photoingibition of photosynthesis induced by visible light. Annu. Rev. Plant. Physiol., No. 35, pp. 15-44. https://doi.org/10.1146/annurev.pp.35.060184.000311

44. Shadchina, T.M. & Pryadkina, G.A. (2006). The effect of soil salinity and nitrogen deficiency on violaxanthin cycle activity and non-photochemical quenching of chlorophyll fluorescence in wheat leaves. Physiology and biochemistry of cultivated plants, No. 3, pp. 214-221.

45. Osmond, C.B. (1981). Photorespiration and photoingibition. Some implication for the energetics of photosintesis. Biochim. Biophys. Acta, No. 639, pp. 77-98. https://doi.org/10.1016/0304-4173(81)90006-9

46. Kirizy, D.A, Stasik, О.О., Pryadkina, G.O. & Shadchina, Т.М. (2014). Assimilation of CO2 and mechanisms of its regulation. Photosynthesis. Vol. 2. Кyiv: Logos [in Ukrainian].

47. Wu, J., Neimanis, S. & Heber, U. (1991). Photorespiration is more effective than the Mehler reaction in protecting the photosynthetic apparatus against photoinhibition. Bot. Acta. No. 104, pp. 283-291. https://doi.org/10.1071/PP99112

48. Flexas, J., Bota, J., Escalona, J.M., Sampol, B. & Medrano, H. (2002). Effects of drought on photosynthesis in grapevines under field conditions: An evaluation of stomatal and mesophyll limitations. Funct. Plant Biol., No. 29. https://doi.org/10.1071/PP01119

49. Medrano, H., Escalona, J.M., Bota, J., Gulias, J. & Flexas, J. (2002). Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann. Bot., No. 89, pp. 895-905. https://doi.org/10.1093/aob/mcf079

50. Rodermel, S. (2001) Pathways of plastid-to-nucleus signaling. Plant Sci., No. 6, pp. 471-478. https://doi.org/10.1016/S1360-1385(01)02085-4

51. Yu, F., Fu, A., Aluru, M., Park, S., Xu, Y., Liu, H., Liu, X., Foudree, A., Nambogga, M. & Rodermel, S. (2007). Variegation mutants and mechanisms of chloroplast biogenesis. Plant Cell Environ., No. 3, pp. 350-365. https://doi.org/10.1111/j.1365-3040.2006.01630.x

52. Fu, A., Liu, H., Yu, F., Kambakam, S., Luan, S. & Rodermel, S. (2012). Alternative oxidases (AOX1a and AOX2) can functionally substitute for plastid terminal oxidase in Arabidopsis chloroplasts. Plant Cell, No. 4, pp. 1579-1595. https://doi.org/10.1105/tpc.112.096701

53. Tilney-Bassett, R.A.E. (1974). The control of plastid inheritance in Pelargonium. III. Heredity, No. 3, pp. 353-360. https://doi.org/10.1038/hdy.1974.102

54. Luru, M.R. & Rodermel, S.R. (2004). Control of chloroplast redox by the IMMUTANS terminal oxidase. Physiol. Plant., No. 1, pp. 4-11. https://doi.org/10.1111/j.0031-9317.2004.0217.x

55. Redei, G.P. (1963). Somatic Instability Caused by a Cysteine-Sensitive Gene in Arabidopsis. Science, No. 3556, pp. 767-769. https://doi.org/10.1126/science.139.3556.767

56. Robbelen, G. (1968). Arabidopsis Research Science, No. 3700, pp. 1192. https://doi.org/10.1126/science.150.3700.1192

57. Rosso, D., Bode, R., Li, W., Krol, M., Saccon, D., Wang, S., Schillaci, L., Rodermel, S., Maxwell, D. & Huner, N. (2009). Photosynthetic redox imbalance governs leaf sectoring in the Arabidopsis thaliana variegation mutants immutans, spotty, var1, and var2. Plant Cell, No. 21, pp. 3473-3492. https://doi.org/10.1105/tpc.108.062752

58. Della Penna, D. & Pogson, B.J. (2006). Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol., No. 57, pp. 711-738. https://doi.org/10.1146/annurev.arplant.56.032604.144301

59. Oelmuller, R., Kendrick, R.E. & Briggs, W.R. (1989). Blue-light mediated accumulation of nuclear-encoded transcripts coding for proteins of the thylakoid membrane is absent in the phytochrome-deficient aurea mutant of tomato. Plant Mol. Biol., No. 2, pp. 223-232. https://doi.org/10.1007/BF00016140

60. Drickamer, K. & Taylor, M.E. (2005). Targeting diversity. Nat. Struct. Mol. Biol., No. 10, pp. 830-831. https://doi.org/10.1038/nsmb1005-830

61. Giraud, E. & Vermeglio, A. (2008). Bacteriophytochromes in anoxygenic photosynthetic bacteria. Photosynth. Res., No. 2, pp. 141-53. https://doi.org/10.1007/s11120-008-9323-0

62. McDonald, A.E., Ivanov, A.G., Bode, R., Maxwell, D.P., Rodermel, S.R. & Huner, N.P. (2011). Flexibility in photosynthetic electron transport: the physiological role of plastoquinol terminaloxidase (PTOX). Biochim. Biophys. Acta, No. 1807, pp. 954-967. https://doi.org/10.1016/j.bbabio.2010.10.024

63. Joet, T., Genty, B., Josse, E.-M., Kuntz, M., Cournac, L. & Peltier, G. (2002). Involvement of a plastid terminal oxidase in plastoquinone oxidation as evidenced by expression of the Arabidopsis thaliana enzyme in tobacco. J. Biol. Chem., No. 35, pp. 31623-31630. https://doi.org/10.1074/jbc.M203538200

64. Aluru, M.R. & Rodermel, S.R. (2004). Control of chloroplast redox by the IMMUTANS terminal oxidase. Physiol. Plant., No. 120, pp. 4-11. https://doi.org/10.1111/j.0031-9317.2004.0217.x

65. Baena-Gonzalez, E., Allahverdiyeva, Y., Svab, Z., Maliga, P., Josse, E.M., Kuntz, M., Maenpaa, P. & Aro, E.M. (2003). Deletion of the tobacco plastid psbA gene triggers an upregulation of the thylakoid-associated NAD(P)H dehydrogenase complex and the plastid terminal oxidase (PTOX). Plant J., No. 6, pp. 704-16. https://doi.org/10.1046/j.1365-313X.2003.01842.x

66. Shahbazi, M., Gilbert, M., Laboure, A. M. & Kuntz, M. (2007). Dual Role of the Plastid Terminal Oxidase in TomatoPlant Physiol., No. 3, pp. 691-702. https://doi.org/10.1104/pp.107.106336

67. Bjorkman, O. & Demmig, B. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, No. 4, pp. 489-504. https://doi.org/10.1007/BF00402983

68. Heyno, E., Gross, C. M., Laureau, C., Culcasi, M., Pietri, S. & Krieger-Liszkay, A. (2009). Plastid Alternative Oxidase (PTOX) Promotes Oxidative Stress When Overexpressed in Tobacco. J. Biol. Chem., No. 45, pp. 31174-31180. https://doi.org/10.1074/jbc.M109.021667

69. Niyogi, K.K. (2000). Safety valves for photosynthesis. Curr. Opin. Plant Biol., No. 6, pp. 455-460. https://doi.org/10.1016/S1369-5266(00)00113-8

70. Peltier, G. & Cournac, L. (2002). Chlororespiration. Annu. Rev. Plant Biol., No. 53, pp. 523-550. https://doi.org/10.1146/annurev.arplant.53.100301.135242

71. Streb, P., Josse, E.M., Gallouet, E., Baptist, F., Kuntz, M., & Cornic, G. (2005). Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain plant species Ranunculus glacialis. Plant Cell Environ., No. 28, pp. 1123-1135. https://doi.org/10.1111/j.1365-3040.2005.01350.x

72. Diaz, M., De Haro, V., Munoz, R. & Quiles M.J. (2007). Chlororespiration is involved in the adaptation of Brassica plants to heat and high light intensity. Plant Cell Environ., No. 30, pp. 1578-1585. https://doi.org/10.1111/j.1365-3040.2007.01735.x

73. Rosso, D., Ivanov, A.G., Fu, A., Geisler-Lee, J., Hendrickson, L., Geisler, M., Stewart, G., Krol, M., Hurry, V., Rodermel, S.R., Maxwell, D.P. & Huner, N.P.A. (2006). IMMUTANS does not act as a stress-induced safety valve in the protection of the photosynthetic apparatus of Arabidopsis during steady-state photosynthesis. Plant Physiol., No. 142, pp. 574-585. https://doi.org/10.1104/pp.106.085886

74. Rumeau, D., Peltier, G., & Cournac, L. (2007). Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ., No. 30, pp. 1041-1051. https://doi.org/10.1111/j.1365-3040.2007.01675.x

75. Wise, R.R. & Hoober, J.K. (2006). The structure and function of plastids. Netherlands: Springer. https://doi.org/10.1007/978-1-4020-4061-0

76. Dutilleul, C., Garmier, M., Noctor, G., Mathieu, C., Chetrit, P., Foyer, C.H., & de Paepe, R. (2003). Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell, No. 5, pp. 1212-1226. https://doi.org/10.1105/tpc.009464

77. Streb, P., Josse , E.-M., Gallouet, E., Baptist, F., Kuntz, M., Cornic, G., Stepien, P. & Johnson, G.N. (2009). Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: Role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol., No. 149, pp. 1154-1165. https://doi.org/10.1104/pp.108.132407

78. Johnson, G.N. & Stepien, P. (2016). Plastid terminal oxidase as a route to improving plant stress tolerance: known knowns and known unknowns. Plant Cell Physiol., No. 57, pp. 1387-1396. https://doi.org/10.1093/pcp/pcw042

79. Ahmad, N., Khan, M.O., Islam, E., Wei, Z.-Y., McAusland, L., Lawson, T., Johnson, G.N. & Nixon, P.J. (2020). Contrasting responses to stress displayed by tobacco overexpressing an algal plastid terminal oxidase in the chloroplast. Front. Plant Sci., No. 11, pp. 501. https://doi.org/10.3389/fpls.2020.00501

80. Houille-Vernes, L., Rappaport, F., Wollman, F.-A., Alric, J. & Johnson, X. (2011). Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas. Proc. Natl. Acad. Sci. USA, No. 108, pp. 20820-20825. https://doi.org/10.1073/pnas.1110518109

81. Ahmad, N., Michoux, F. & Nixon, P.J. (2012). Investigating the production of foreign membrane proteins in tobacco chloroplasts: expression of an algal plastid terminal oxidase. PLoS One, No. 7 (7): e41722. https://doi.org/10.1371/journal.pone.0041722

82. Wingler, A., Lea, P.W., Quick, P.W. & Leegod, R.C. (2000). Photorespiration: metabolic pathweys and their role in stress protection. Phil. Trans. R. Soc. Lond. B., No. 355, pp. 1517-1529. https://doi.org/10.1098/rstb.2000.0712

83. Takeba, G. & Kozaki, A. (1998). Photorespiration is essential mechanism for the protection of C-3 plants from photooxydation. Stress Responses of Photosynthetic Organisms. Amsterdam: Elsevier Science. https://doi.org/10.1016/B978-0-444-82884-2.50005-4

84. Cornic, G. & Fresneau, C. (2002). Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Ann. Bot., No. 89, pp. 887-894. https://doi.org/10.1093/aob/mcf064

85. Gururani, M.A., Venkatesh, J. & Tran, L.-S.P. (2015). Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol. Plant, No. 8, pp. 1304-1320. https://doi.org/10.1016/j.molp.2015.05.005

86. Shevchenko, V.V. & Bondarenko, O.Yu. (2022). Changes in the parameters of chlorophyll fluorescence induction and content of low molecular weight protective proteins in modern varieties of winter wheat under drought. Science and Education a New Dimension, No. 34, pp. 7-10 [in Ukranian]. https://doi.org/10.31174/SEND-NT2022-268X34-01

87. Bondarenko, O.Yu. & Shevchenko, V.V. (2021). Changes in the content of pigments and structural proteins of chloroplast membranes in different varieties of winter wheat under the influence of drought. Science and Education a New Dimension, No. 32, pp. 7-10 [in Ukranian]. https://doi.org/10.31174/SEND-NT2021-255IX32-01

88. Zandalinas, S.I., Sengupta, S., Fritschi, F.B., Azad, R.K., Nechushtai, R. & Mittler, R. (2021). The impact of multifactorial stress combination on plant grouth and survival. New Phytologst., No. 230, pp. 1034-1048. https://doi.org/10.1111/nph.17232

89. Kiriziy, D.A. & Stasik, O.O. (2022). Effects of drought and high temperature on physio­logical and biochemical processes, and productivity of plants. Fiziol. rast. genet., No. 2, pp. 95-122 [in Ukranian]. https://doi.org/10.15407/frg2022.02.095

90. Zandalinas, S.I., Fritschi, F.B. & Mittler, R. (2021). Global Warming, Climate Chenge, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. Trend in Plant Science, No. 6. https://doi.org/10.1016/j.tplants.2021.02.011

91. Moor, C.E., Meacham-Hensold, K., Lemonnier, P., Slattery, R.A., Benjamin, C., Bernacchi, C.J., Lawson, T. & Cavanagh, A.P. (2021). The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J. Exp. Bot., 72, No. 8, pp. 2822-2844. https://doi.org/10.1093/jxb/erab090

92. Kedruk, A.C., Kirizy, D.A., Sokolovska-Sergienko, O.G. & Stasik, О.О. (2021). Response of the photosynthetic apparatus of winter wheat varieties to the combined action of drought and higt temperature. Fiziol. rast. genet., No. 53, pp. 387-405 [in Ukranian]. https://doi.org/10.15407/frg2021.05.387

93. Shevchenko, V.V. & Bondarenko, O.Yu. (2020). Structural and functional changes of photosystem II in different varieties of winter wheat under the combined action of drought and high temperature. Science and Education a New Dimension. Natur. Techn. Sci., No. 28, pp. 7-9 [in Ukranian]. https://doi.org/10.31174/SEND-NT2020-233VIII28-01

94. Beyer, W.F., Fridovich, I., Mullenbach, G.T. & Hallewell, R. (1987). Examination of the role of arginine-143 in the human copper and zinc superoxide dismutase by site-specific mutagenesis. J. Biol Chem., No. 23, pp. 11182-11187. https://doi.org/10.1016/S0021-9258(18)60942-1

95. Mayer, M.P., Hahn, F.M., Stillman, D.J. & Poulter, C.D. (1992). Disruption and mapping of IDI1, the gene for isopentenyl diphosphate isomerase in Saccharomyces cerevisiae. Yeast, No. 9, pp. 743-748. https://doi.org/10.1002/yea.320080907

96. Mayer, S.M. & Beale, S.I. (1990). Light regulation of d-aminolevulinic acid biosynthetic enzymes and tRNA in Euglena gracilis. Plant Physiol., No. 3, pp. 1365-1375. https://doi.org/10.1104/pp.94.3.1365

97. Hugueney, P., Romer, S., Kuntz, M. & Camara, B. (1992). Characterization and molecular cloning of a bifunctional flavoprotein catalyzing the synthesis of phytofluene and z-carotene in Capsicum chromoplasts. Eur. J. Biochem., No. 209, pp. 399-407. https://doi.org/10.1111/j.1432-1033.1992.tb17302.x

98. Schledz, M., Al-Babili, S., von Lintig, J., Kleinig, H., Rabbani, S. & Beyer, P. (1996). Phytoene synthase cloned from Narcissus pseudonarcissus and functionally expressed in insect cells to reveal its galactolipid requirement, differential topology in chromoplasts and expression during flower development. The Plant Journal, No. 10, pp. 781-792 https://doi.org/10.1046/j.1365-313X.1996.10050781.x

99. Al-Babili, S., von Lintig, J., Haubruck, H. & Beyer, P. (1996). A novel, soluble form of phytoene desaturase from Narcissus pseudonarcissus chromoplasts is Hsp70-complexed and competent for flavinylation, membrane association and enzymatic activation. Plant J., No. 5, pp. 601-612. https://doi.org/10.1046/j.1365-313X.1996.9050601.x

100. Okegawa, Y., Kobayashi, Y. & Shikanai, T. (2010). Physiological links amoung alternative electron transport pathways that reduce and oxidize plastoquinone in Arabidopsis. The Plant Journal, No. 63, pp. 458-468. https://doi.org/10.1111/j.1365-313X.2010.04252.x

101. Rochaix, J.D. (2011). Regulation of photosynthetic electron transport. Biochim. Biophys. Acta, No. 3, pp. 375-83. https://doi.org/10.1016/j.bbabio.2010.11.010

102. Josse, E.M., Simkin, A.J., Gaffe, J., Laboure, A.M., Kuntz, M. & Carol, P. (2000). A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol., No. 123, pp. 1427-1436. https://doi.org/10.1104/pp.123.4.1427

103. Pfannschmindt, T., Nilsson, A. & Allen, J.F. (1999). Photosyntetic control of chloroplast gene expression. Nature, No. 397, p. 625. https://doi.org/10.1038/17624

104. Paul, M.J. & Frigerio, L. (2007). Coated vesicles in plant cells. Semin. Cell Dev. Biol., No. 4, pp. 471-478. https://doi.org/10.1016/j.semcdb.2007.07.005

105. Brzezowski, P., Ksas, B., Havaux, M., Grimm, B., Chazaux, M., Peltier, G., Johnson, X. & Alric, J. (2019). The function of protoporphyrinogen ix oxidase in chlorophyll biosynthesis requires oxidised plastoquinone in Chlamydomonas reinhardtii. Commun. Biology, No. 2, p. 159. https://doi.org/10.1038/s42003-019-0395-5

106. Carol, P. & Kuntz, M. (2001). A plastid terminal oxidase comes to light: implications for carotenoid biosynthesis and chlororespiration. Trends Plant Sci., No. 6, pp. 31-36. https://doi.org/10.1016/S1360-1385(00)01811-2

107. Kuntz, M. (2004). Plastid terminal oxidase and its biological significance. Planta, No. 218, pp. 896-899. https://doi.org/10.1007/s00425-004-1217-6

108. Ibanez, H., Ballester, A., Munoz, R. & Quiles, M.J. (2010). Chlororespiration and tolerance to drought, heat and high illumination. J. Plant Physiol., No. 167, pp. 732-738. https://doi.org/10.1016/j.jplph.2009.12.013